8,684 research outputs found
The Consumption of Reference Resources
Under the operational restriction of the U(1)-superselection rule, states
that contain coherences between eigenstates of particle number constitute a
resource. Such resources can be used to facilitate operations upon systems that
otherwise cannot be performed. However, the process of doing this consumes
reference resources. We show this explicitly for an example of a unitary
operation that is forbidden by the U(1)-superselection rule.Comment: 4 pages 6x9 page format, 2 figure
Enhancing quantum transport in a photonic network using controllable decoherence
Transport phenomena on a quantum scale appear in a variety of systems,
ranging from photosynthetic complexes to engineered quantum devices. It has
been predicted that the efficiency of quantum transport can be enhanced through
dynamic interaction between the system and a noisy environment. We report the
first experimental demonstration of such environment-assisted quantum
transport, using an engineered network of laser-written waveguides, with
relative energies and inter-waveguide couplings tailored to yield the desired
Hamiltonian. Controllable decoherence is simulated via broadening the bandwidth
of the input illumination, yielding a significant increase in transport
efficiency relative to the narrowband case. We show integrated optics to be
suitable for simulating specific target Hamiltonians as well as open quantum
systems with controllable loss and decoherence.Comment: 6 pages, 3 figure
Magnetic fields in galaxies: I. Radio disks in local late-type galaxies
We develop an analytical model to follow the cosmological evolution of
magnetic fields in disk galaxies. Our assumption is that fields are amplified
from a small seed field via magnetohydrodynamical (MHD) turbulence. We further
assume that this process is fast compared to other relevant timescales, and
occurs principally in the cold disk gas. We follow the turbulent energy density
using the Shabala & Alexander (2009) galaxy formation and evolution model.
Three processes are important to the turbulent energy budget: infall of cool
gas onto the disk and supernova feedback increase the turbulence; while star
formation removes gas and hence turbulent energy from the cold gas. Finally, we
assume that field energy is continuously transferred from the incoherent random
field into an ordered field by differential galactic rotation. Model
predictions are compared with observations of local late type galaxies by Fitt
& Alexander (1993) and Shabala et al. (2008). The model reproduces observed
magnetic field strengths and luminosities in low and intermediate-mass
galaxies. These quantities are overpredicted in the most massive hosts,
suggesting that inclusion of gas ejection by powerful AGNs is necessary in
order to quench gas cooling and reconcile the predicted and observed magnetic
field strengths.Comment: 10 pages, 8 figures; MNRAS in pres
Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking
Extracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking
Calculation of nonzero-temperature Casimir forces in the time domain
We show how to compute Casimir forces at nonzero temperatures with
time-domain electromagnetic simulations, for example using a finite-difference
time-domain (FDTD) method. Compared to our previous zero-temperature
time-domain method, only a small modification is required, but we explain that
some care is required to properly capture the zero-frequency contribution. We
validate the method against analytical and numerical frequency-domain
calculations, and show a surprising high-temperature disappearance of a
non-monotonic behavior previously demonstrated in a piston-like geometry.Comment: 5 pages, 2 figures, submitted to Physical Review A Rapid
Communicatio
Predicting the cosmological constant with the scale-factor cutoff measure
It is well known that anthropic selection from a landscape with a flat prior
distribution of cosmological constant Lambda gives a reasonable fit to
observation. However, a realistic model of the multiverse has a physical volume
that diverges with time, and the predicted distribution of Lambda depends on
how the spacetime volume is regulated. We study a simple model of the
multiverse with probabilities regulated by a scale-factor cutoff, and calculate
the resulting distribution, considering both positive and negative values of
Lambda. The results are in good agreement with observation. In particular, the
scale-factor cutoff strongly suppresses the probability for values of Lambda
that are more than about ten times the observed value. We also discuss several
qualitative features of the scale-factor cutoff, including aspects of the
distributions of the curvature parameter Omega and the primordial density
contrast Q.Comment: 16 pages, 6 figures, 2 appendice
Positron emission tomographic imaging of Copper 64- and Gallium 68-labeled chelator conjugates of the somatostatin agonist Tyr3-octreotate
The bifunctional chelator and radiometal have been shown to have a direct effect on the pharmacokinetics of somatostatin receptor (SSTR)-targeted imaging agents. We evaluated three Y3-TATE analogues conjugated to NOTA-based chelators for radiolabeling with 64 Cu and 68 Ga for small-animal positron emission tomographic/computed tomograhic (PET/CT) imaging. Two commercially available NOTA analogues, p-SCN-Bn-NOTA and NODAGA, were evaluated. The p-SCN-Bn-NOTA analogues were conjugated to Y3- TATE through β-Ala and PEG 8 linkages. The NODAGA chelator was directly conjugated to Y3-TATE. The analogues labeled with 64 Cu or 68 Ga were analyzed in vitro for binding affinity and internalization and in vivo by PET/CT imaging, biodistribution, and Cerenkov imaging ( 68 Ga analogues). We evaluated the effects of the radiometals, chelators, and linkers on the performance of the SSTR subtype 2–targeted imaging agents and also compared them to a previously reported agent, 64 Cu-CB-TE2A-Y3-TATE. We found that the method of conjugation, particularly the length of the linkage between the chelator and the peptide, significantly impacted tumor and nontarget tissue uptake and clearance. Among the 64 Cu- and 68 Ga-labeled NOTA analogues, NODAGA-Y3-TATE had the most optimal in vivo behavior and was comparable to 64 Cu-CB-TE2A-Y3-TATE. An advantage of NODAGA-Y3-TATE is that it allows labeling with 64 Cu and 68 Ga, providing a versatile PET probe for imaging SSTr subtype 2-positive tumors
On the origin of 140 GHz emission from the 4 July 2012 solar flare
The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State
Technical University Radio Telescope RT-7.5 at 93 and 140~GHz as well as
Kislovodsk and Mets\"ahovi radio telescopes, Radio Solar Telescope Network
(RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux
between 93 and 140 GHz has been observed increasing with frequency. On the
basis of the SDO/AIA data the differential emission measure has been
calculated. It is shown that the thermal coronal plasma with the temperature
above 0.5~MK cannot be responsible for the observed sub-THz flare emission. The
non-thermal gyrosynchrotron mechanism can be responsible for the microwave
emission near ~GHz but the observed millimeter spectral characteristics are
likely to be produced by the thermal bremsstrahlung emission from plasma with a
temperature of about 0.1~MK.Comment: 18 pages, 6 figure
- …