99 research outputs found

    Finite-temperature coupled cluster: Efficient implementation and application to prototypical systems

    Get PDF
    We discuss the theory and implementation of the finite temperature coupled cluster singles and doubles (FT-CCSD) method including the equations necessary for an efficient implementation of response properties. Numerical aspects of the method including the truncation of the orbital space and integration of the amplitude equations are tested on some simple systems, and we provide some guidelines for applying the method in practice. The method is then applied to the 1D Hubbard model, the uniform electron gas (UEG) at warm, dense conditions, and some simple materials. The performance of model systems at high temperatures is encouraging: for the one-dimensional Hubbard model, FT-CCSD provides a qualitatively accurate description of finite-temperature correlation effects even at U = 8, and it allows for the computation of systematically improvable exchange–correlation energies of the warm, dense UEG over a wide range of conditions. We highlight the obstacles that remain in using the method for realistic ab initio calculations on materials

    A time-dependent formulation of coupled cluster theory for many-fermion systems at finite temperature

    Get PDF
    We present a time-dependent formulation of coupled cluster theory. This theory allows for direct computation of the free energy of quantum systems at finite temperature by imaginary time integration and is closely related to the thermal cluster cumulant theory of Mukherjee and co-workers [ Chem. Phys. Lett. 1992, 192, 55−61; Phys. Rev. E 1993, 48, 3373−3389; Chem. Phys. Lett. 2001, 335, 281−288; Chem. Phys. Lett. 2002, 352, 63−69; Int. J. Mod. Phys. B 2003, 17, 5367−5377]. Our derivation of the finite-temperature theory highlights connections to perturbation theory and to zero-temperature coupled cluster theory. We show explicitly how the finite-temperature coupled cluster singles and doubles amplitude equations can be derived in analogy with the zero-temperature theory and how response properties can be efficiently computed using a variational Lagrangian. We discuss the implementation for realistic systems and showcase the potential utility of the method with calculations of the exchange correlation energy of the uniform electron gas under warm dense matter conditions

    Finite-temperature coupled cluster: Efficient implementation and application to prototypical systems

    Get PDF
    We discuss the theory and implementation of the finite temperature coupled cluster singles and doubles (FT-CCSD) method including the equations necessary for an efficient implementation of response properties. Numerical aspects of the method including the truncation of the orbital space and integration of the amplitude equations are tested on some simple systems, and we provide some guidelines for applying the method in practice. The method is then applied to the 1D Hubbard model, the uniform electron gas (UEG) at warm, dense conditions, and some simple materials. The performance of model systems at high temperatures is encouraging: for the one-dimensional Hubbard model, FT-CCSD provides a qualitatively accurate description of finite-temperature correlation effects even at U = 8, and it allows for the computation of systematically improvable exchange–correlation energies of the warm, dense UEG over a wide range of conditions. We highlight the obstacles that remain in using the method for realistic ab initio calculations on materials

    Non-orthogonal configuration interaction with single substitutions for core-excited states: An extension to doublet radicals

    Get PDF
    In this paper, we present an open-shell extension of the non-orthogonal configuration interaction singles (NOCIS) method for the calculation of core-excited states, intended for peak assignment in XAS spectra of doublet radicals. This extension requires the consideration of additional configurations due to the singly occupied open-shell orbital, and the addition of essential orbital relaxation effects is found to provide a significant improvement on standard CIS, while maintaining the desirable properties of spin purity, variationality, and size consistency. We apply this method to the calculation of core excitations for several open-shell molecules and demonstrate that it performs competitively with other available methods, despite a lack of dynamic correlation. In particular, relative to CVS-ADC(2)-x, RMS error is reduced by a factor of 6 over usual orthogonal CIS and is comparable to time-dependent density functional theory with the best short-range corrected functionals
    • …
    corecore