632 research outputs found
The Economics of investment in Movable interior Blankets for Fuel Conservation in Greenhouses
A.E. Res. 80-2A model for evaluating the economics of investment in Movable Interior Blankets for fuel conservation in greenhouses was developed. The after-tax costs and benefits of the blanket were analyzed using the Net Present Value method. The model uses 13 input parameters to generate an estimate of the Net Present Value of the investment for its useful life. The results of two examples are reported. Sensitivity analyses were conducted to indicate the relative importance of the various input parameters. It was shown that changes in quantitiy or quality of crop would have very large effects on net present value. At this time, there is some disagreement regarding the effect of the blanket on crop growth. Further research is needed to substantiate and quantify the potential effects on yield and quality before the effect can be usefully included in estimates of net present value. Other suggested areas of research include (1) improving the materials, design and use of the blankets, and (2) improving the ability to predict the performance of the blanket in specific greenhouses
Qualitative understanding of the sign of t' asymmetry in the extended t-J Model and relevance for pairing properties
Numerical calculations illustrate the effect of the sign of the next
nearest-neighbor hopping term t' on the 2-hole properties of the t-t'-J model.
Working mainly on 2-leg ladders, in the -1.0 < t'/t < 1.0 regime, it is shown
that introducing t' in the t-J model is equivalent to effectively renormalizing
J, namely t' negative (positive) is equivalent to an effective t-J model with
smaller (bigger) J. This effect is present even at the level of a 2x2 plaquette
toy model, and was observed also in calculations on small square clusters.
Analyzing the transition probabilities of a hole-pair in the plaquette toy
model, it is argued that the coherent propagation of such hole-pair is enhanced
by a constructive interference between both t and t' for t'>0. This
interference is destructive for t'<0.Comment: 5 pages, 4 figures, to appear in PRB as a Rapid Communicatio
The spin and charge gaps of the half-filled N-leg Kondo ladders
In this work, we study N-leg Kondo ladders at half-filling through the
density matrix renormalization group. We found non-zero spin and charge gaps
for any finite number of legs and Kondo coupling . We also show evidence
of the existence of a quantum critical point in the two dimensional Kondo
lattice model, in agreement with previous works. Based on the binding energy of
two holes, we did not find evidence of superconductivity in the 2D Kondo
lattice model close to half-filling.Comment: 4 pages, 1 table, 3 fig
Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method
We use the density matrix renormalization group (DMRG) for transfer matrices
to numerically calculate impurity corrections to thermodynamic properties. The
method is applied to two impurity models in the spin-1/2 chain, namely a weak
link in the chain and an external impurity spin. The numerical analysis
confirms the field theory calculations and gives new results for the crossover
behavior.Comment: 9 pages in revtex format including 5 embedded figures (using epsf).
To appear in PRB. The latest version in PDF format can be found at
http://fy.chalmers.se/~eggert/papers/DMRGimp.pd
Suppression of static stripe formation by next-neighbor hopping
We show from real-space Hartree-Fock calculations within the extended Hubbard
model that next-nearest neighbor (t') hopping processes act to suppress the
formation of static charge stripes. This result is confirmed by investigating
the evolution of charge-inhomogeneous corral and stripe phases with increasing
t' of both signs. We propose that large t' values in YBCO prevent static stripe
formation, while anomalously small t' in LSCO provides an additional reason for
the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure
Differences Between Hole and Electron Doping of a Two-Leg CuO Ladder
Here we report results of a density-matrix-renormalization-group (DMRG)
calculation of the charge, spin, and pairing properties of a two-leg CuO
Hubbard ladder. The outer oxygen atoms as well as the rung and leg oxygen atoms
are included along with near-neighbor and oxygen-hopping matrix elements. This
system allows us to study the effects of hole and electron doping on a system
which is a charge transfer insulator at a filling of one hole per Cu and
exhibits power law, d-wave-like pairing correlations when doped. In particular,
we focus on the differences between doping with holes or electrons.Comment: REVTEX 4, 10 pages, 13 figure
Magnetic Fields in the 3C 129 Cluster
We present multi-frequency VLA observations of the two radio galaxies 3C 129
and 3C 129.1 embedded in a luminous X-ray cluster. These radio observations
reveal a substantial difference in the Faraday Rotation Measures (RMs) toward
3C 129.1 at the cluster center and 3C 129 at the cluster periphery. After
deriving the density profile from available X-ray data, we find that the RM
structure of both radio galaxies can be fit by a tangled cluster magnetic field
with strength 6 microGauss extending at least 3 core radii (450 kpc) from the
cluster center. The magnetic field makes up a small contribution to the total
pressure (5%) in the central regions of the cluster. The radio morphology of 3C
129.1 appears disturbed on the southern side, perhaps by the higher pressure
environment. In contrast with earlier claims for the presence of a moderately
strong cooling flow in the 3C 129 cluster, our analysis of the X-ray data
places a limit on the mass deposition rate from any such flow of <1.2 Msun/yr.Comment: in press at MNRA
Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland
The δ13C value of pore water methane produced in a Michigan peatland varied by 11% during the year. This isotopic shift resulted from large seasonal changes in the pathways of methane production. On the basis of mass balance calculations, the δ13C value of methane from CO2 reduction (average =-71.4 ± 1.8%) was depleted in 13C compared to that produced from acetate (-44.4 ± 8.2%o). The dissolved methane at the site remained heavy (approximately-51%o) during most of the year. Tracer experiments using 14C-labeled CO2 indicated that during January 110 ± 25% of the methane was produced by CO2 reduction. Because of low-methane production rates during the winter, this C-depleted methane had only a slight effect on the isotopic composition of the methane pool. In early spring when peat temperatures and methane production rates increased, the δ13C value of the dissolved methane in shallow peat was influenced by the isotopically light methane and approached-61‰. Peat incubation experiments conducted at 15°C in May and June (when the peat reaches its maximum temperature) indicated that an average of 84 ± 9% of the methane production was from acetate and had an average δ13C value of-48.7 ± 5.6‰. Rising acetate concentrations during April-May (approaching 1 mmol L-1(mM)) followed by a rapid decrease in acetate concentrations during May-June reflected the shift toward methane production dominated by acetate fermentation. During this period, dissolved methane in shallow peat at the site returned to heavier values (approximately-5 l%o) similar to that produced in the incubation experiments
Partially filled stripes in the two dimensional Hubbard model: statics and dynamics
The internal structure of stripes in the two dimensional Hubbard model is
studied by going beyond the Hartree-Fock approximation. Partially filled
stripes, consistent with experimental observations, are stabilized by quantum
fluctuations, included through the Configuration Interaction method. Hopping of
short regions of the stripes in the transverse direction is comparable to the
bare hopping element. The integrated value of compares well
with experimental results.Comment: 4 page
- …