34 research outputs found

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    More Than Smell - COVID-19 Is Associated With Severe Impairment of Smell,Taste, and Chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms. © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved

    Olfactory ensheathing cells from the nasal mucosa and olfactory bulb have distinct membrane properties

    No full text
    Transplantation of olfactory ensheathing cells (OECs) is a potential therapy for the regeneration of damaged neurons. While they maintain tissue homeostasis in the olfactory mucosa (OM) and olfactory bulb (OB), their regenerative properties also support the normal sense of smell by enabling continual turnover and axonal regrowth of olfactory sensory neurons (OSNs). However, the molecular physiology of OECs is not fully understood, especially that of OECs from the mucosa. Here, we carried out whole-cell patch-clamp recordings from individual OECs cultured from the OM and OB of the adult rat, and from the human OM. A subset of OECs from the rat OM cultured 1-3 days in vitro had large weakly rectifying K+ currents, which were sensitive to Ba2+ and desipramine, blockers of Kir4-family channels. Kir4.1 immunofluorescence was detectable in cultured OM cells colabeled for the OEC marker S100, and in S100-labeled cells found adjacent to OSN axons in mucosal sections. OECs cultured from rat OB had distinct properties though, displaying strongly rectifying inward currents at hyperpolarized membrane potentials and strongly rectifying outward currents at depolarized potentials. Kir4.1 immunofluorescence was not evident in OECs adjacent to axons of OSNs in the OB. A subset of human OECs cultured from the OM of adults had membrane properties comparable to those of the rat OM that is dominated by Ba2+ -sensitive weak inwardly rectifying currents. The membrane properties of peripheral OECs are different to those of central OECs, suggesting they may play distinct roles during olfaction

    Diagnosing nasal obstruction and its common causes using the nasal acoustic device: A pilot study

    No full text
    Objectives: There is a need to develop a medical device which can accurately measure normal and abnormal nasal breathing which the patient can better understand in addition to being able to diagnose the cause for their nasal obstruction. The aim is to evaluate the accuracy of the nasal acoustic device (NAD) in diagnosing the common causes for nasal obstruction and diagnosing normal and abnormal (nasal obstruction) nasal breathing. Methods: This pilot study recruited 27 patients with allergic rhinitis (AR), chronic rhinosinusitis (CRS), and a deviated nasal septum (DNS) which represents the common causes for NO and 26 controls (with normal nasal breathing). Nasal breathing sounds were recorded by the NAD akin to two small stethoscopes placed over the left and right nasal ala. The novel outcome metrics for the NAD include inspiratory nasal acoustic score (INA) score, expiratory nasal acoustic (ENA) score and the inspiratory nasal obstruction balance index (NOBI). The change in acoustic score following decongestant is key in this diagnostic process. Results: Pre‐decongestant ENA score was used to detect the presence of nasal obstruction in patients compared to controls, with a sensitivity of 0.81 (95% CI: 0.66‐0.96) and a specificity of 0.77 (0.54‐1.00). Post‐decongestant percentage change in INA score was used to identify the presence of AR or CRS, with a sensitivity of 0.87 (0.69‐1.00) and specificity of 0.72 (0.55‐0.89) for AR; and a sensitivity of 0.92 (0.75‐1.00) and specificity of 0.69 (0.52‐0.86) for CRS. Post‐decongestant inspiratory NOBI was used to identify DNS, with a sensitivity of 0.77 (0.59‐0.95) and specificity of 0.94 (0.82‐1.00). Conclusion: We have demonstrated that the NAD can help distinguish between normal and abnormal nasal breathing and help diagnose AR, CRS, and DNS. Such a device has not been invented and could revolutionize COVID‐19 recovery telemedicine. Level of Evidence: Diagnostic accuracy study—Level III

    Intranasal sodium citrate in quantitative and qualitative olfactory dysfunction: results from a prospective, controlled trial of prolonged use in 60 patients

    No full text
    Objectives!#!We have previously shown that treatment with intranasal sodium citrate may be beneficial in post-infectious olfactory dysfunction. Sodium citrate reduces free intranasal calcium and is, therefore, thought to prevent calcium-mediated feedback inhibition at the level of the olfactory receptor. We aimed to determine whether treatment with a 2-week course of intranasal sodium citrate improves quantitative olfactory function in patients with post-infectious impairment. We also aimed to determine whether sodium citrate is beneficial in treating qualitative olfactory dysfunction.!##!Methods!#!We performed a prospective, controlled study. Patients applied intranasal sodium citrate solution to the right nasal cavity for 2 weeks. The left nasal cavity was untreated and, therefore, acted as an internal control. Monorhinal olfactory function was assessed using the 'Sniffin' Sticks' composite 'TDI' score, before and after treatment. The presence of parosmia and phantosmia was also assessed.!##!Results!#!Overall, there was a significant increase in TDI after treatment (using the best of right and left sides). Treatment with sodium citrate did not significantly improve quantitative olfactory function, compared to control. The proportion of patients reporting parosmia did not change significantly after treatment. However, there was a significant reduction in the proportion of patients reporting phantosmia, at the end of the study period.!##!Conclusions!#!Treatment with intranasal sodium citrate for a period of 2 weeks does not appear to improve quantitative olfactory function in patients with post-infectious impairment, compared to control. It may, however, be beneficial in treating phantosmia, which should be further addressed in future work
    corecore