289 research outputs found

    Expanding the parameters of academia

    Get PDF
    This paper draws on qualitative data gathered from two studies funded by the UK Leadership Foundation for Higher Education to examine the expansion of academic identities in higher education. It builds on Whitchurch’s earlier work, which focused primarily on professional staff, to suggest that the emergence of broadly based projects such as widening participation, learning support and community partnership is also impacting on academic identities. Thus, academic as well as professional staff are increasingly likely to work in multi-professional teams across a variety of constituencies, as well as with external partners, and the binary distinction between ‘academic’ and ‘non-academic’ roles and activities is no longer clear-cut. Moreover, there is evidence from the studies of an intentionality about deviations from mainstream academic career routes among respondents who could have gone either way. Consideration is therefore given to factors that influence individuals to work in more project-oriented areas, as well as to variables that affect ways in which these roles and identities develop. Finally, three models of academically oriented project activity are identified, and the implications of an expansion of academic identities are reviewed

    Complete Genome Sequence of Stenotrophomonas maltophilia Strain CF13, Recovered from Sputum from an Australian Cystic Fibrosis Patient.

    Full text link
    Stenotrophomonas maltophilia isolate CF13 is a multidrug-resistant isolate that was recovered in Sydney, Australia, in 2011, from a sputum sample from an individual with cystic fibrosis. The genome sequence of CF13 was completed using long- and short-read technologies

    Pseudomonas aeruginosa is capable of natural transformation in biofilms

    Get PDF
    Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa

    Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa

    Full text link
    © 2019, The Author(s). Chronic wound treatment is becoming increasingly difficult and costly, further exacerbated when wounds become infected. Bacterial biofilms cause most chronic wound infections and are notoriously resistant to antibiotic treatments. The need for new approaches to combat polymicrobial biofilms in chronic wounds combined with the growing antimicrobial resistance crisis means that honey is being revisited as a treatment option due to its broad-spectrum antimicrobial activity and low propensity for bacterial resistance. We assessed four well-characterised New Zealand honeys, quantified for their key antibacterial components, methylglyoxal, hydrogen peroxide and sugar, for their capacity to prevent and eradicate biofilms produced by the common wound pathogen Pseudomonas aeruginosa. We demonstrate that: (1) honey used at substantially lower concentrations compared to those found in honey-based wound dressings inhibited P. aeruginosa biofilm formation and significantly reduced established biofilms; (2) the anti-biofilm effect of honey was largely driven by its sugar component; (3) cells recovered from biofilms treated with sub-inhibitory honey concentrations had slightly increased tolerance to honey; and (4) honey used at clinically obtainable concentrations completely eradicated established P. aeruginosa biofilms. These results, together with their broad antimicrobial spectrum, demonstrate that manuka honey-based wound dressings are a promising treatment for infected chronic wounds, including those with P. aeruginosa biofilms

    Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production

    Full text link
    © 2015 Australian Society for Parasitology Inc. Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south-eastern Asia

    Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobiala combined with manuka honey

    Get PDF
    Skin infections caused by antibiotic resistant Staphylococcus aureus are a significant health problem worldwide; often associated with high treatment cost and mortality rate. Complex natural products like New Zealand (NZ) manuka honey have been revisited and studied extensively as an alternative to antibiotics due to their potent broad-spectrum antimicrobial activity, and the inability to isolate honey-resistant S. aureus. Previous studies showing synergistic effects between manuka-type honeys and antibiotics have been demonstrated against the growth of one methicillin-resistant S. aureus (MRSA) strain. We have previously demonstrated strong synergistic activity between NZ manuka-type honey and rifampicin against growth and biofilm formation of multiple S. arueus strains. Here, we have expanded our investigation using multiple S. aureus strains and four different antibiotics commonly used to treat S. aureus-related skin infections: rifampicin, oxacillin, gentamicin, and clindamycin. Using checkerboard microdilution and agar diffusion assays with S. aureus strains including clinical isolates and MRSA we demonstrate that manuka-type honey combined with these four antibiotics frequently produces a synergistic effect. In some cases when synergism was not observed, there was a significant enhancement in antibiotic susceptibility. Some strains that were highly resistant to an antibiotic when present alone become sensitive to clinically achievable concentrations when combined with honey. However, not all of the S. aureus strains tested responded in the same way to these combinational treatments. Our findings support the use of NZ manuka-type honeys in clinical treatment against S. aureus-related infections and extend their potential use as an antibiotic adjuvant in combinational therapy. Our data also suggest that manuka-type honeys may not work as antibiotic adjuvants for all strains of S. aureus, and this may help determine the mechanistic processes behind honey synergy

    Pfsec13 is an unusual chromatin-associated nucleoporin of plasmodium falciparum that is essential for parasite proliferation in human erythrocytes

    Full text link
    In Plasmodium falciparum, the deadliest form of human malaria, the nuclear periphery has drawn much attention due to its role as a subnuclear compartment involved in virulence gene expression. Recent data have implicated components of the nuclear envelope in regulating gene expression in several eukaryotes. Special attention has been given to nucleoporins that compose the nuclear pore complex (NPC). However, very little is known about components of the nuclear envelope in Plasmodium parasites. Here we characterize PfSec13, an unusual nucleoporin of P. falciparum, which shows unique structural similarities suggesting that it is a fusion between Sec13 and Nup145C of yeast. Using super resolution fluorescence microscopy (3D-SIM) and in vivo imaging, we show that the dynamiclocalization of PfSec13 during parasites' intra-erythrocytic development corresponds with that of the NPCs and that these dynamics are associated with microtubules rather than with F-actin. In addition, PfSec13 does not co-localize with the heterochormatin markers HP1 and H3K9me3, suggesting euchromatic location of the NPCs. The proteins associated with PfSec13 indicate that this unusual Nup is involved in several cellular processes. Indeed, ultrastructural and chromatin immunoprecipitation analyses revealed that, in addition to the NPCs, PfSec13 is found in the nucleoplasm where it is associated with chromatin. Finally, we used peptide nucleic acids (PNA) to downregulate PfSec13 and show that it is essential for parasite proliferation in human erythrocytes. © 2013. Published by The Company of Biologists Ltd

    Pandoraea fibrosis sp. Nov., a novel pandoraea species isolated from clinical respiratory samples

    Full text link
    © 2019 IUMS. Pandoraea species have been isolated from diverse environmental samples and are emerging important respiratory pathogens, particularly in people with cystic fibrosis (CF). In the present study, two bacterial isolates initially recovered from consecutive sputum samples collected from a CF patient and identified as Pandoraea pnomenusa underwent a polyphasic taxonomic analysis. The isolates were found to be Gram-negative, facultative anaerobic motile bacilli and subsequently designated as strains 6399 T (=LMG29626 T =DSM103228 T ) and 7641 (=LMG29627=DSM103229), respectively. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that 6399 T and 7641 formed a distinct phylogenetic lineage within the genus Pandoraea. Genome sequence comparison analysis indicated that strains 6399 T and 7641 are clonal and share 100 % similarity, however, similarity to other type strains (ANIb 73.2–88.8 %, ANIm 83.5–89.9 % and OrthoANI 83.2– 89.3 %) indicates that 6399 T and 7641 do not belong to any of the reported type species. The major cellular fatty acids of 6399 T were C 16: 0 (32.1 %) C 17: 0 cyclo (18.7 %) and C 18: 1 !7c (14.5 %), while Q-8 was the only respiratory quinone detected. The major polar lipids identified were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of 6399 T was 62.9 (mol%). Strain 6399 T can be differentiated from other members of Pandoraea by the absence of C 19: 0 !8c cyclo and by the presence of C 17: 0 !8c cyclo. Together our data show that the bacterial strains 6399 T and 7641 represent a novel species of the genus Pandoraea, for which the name Pandoraea fibrosis sp. nov. is proposed (type strain 6399 T )

    A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa.

    Get PDF
    Pseudomonas aeruginosa is an extremely successful pathogen able to cause both acute and chronic infections in a range of hosts, utilizing a diverse arsenal of cell-associated and secreted virulence factors. A major cell-associated virulence factor, the Type IV pilus (T4P), is required for epithelial cell adherence and mediates a form of surface translocation termed twitching motility, which is necessary to establish a mature biofilm and actively expand these biofilms. P. aeruginosa twitching motility-mediated biofilm expansion is a coordinated, multicellular behaviour, allowing cells to rapidly colonize surfaces, including implanted medical devices. Although at least 44 proteins are known to be involved in the biogenesis, assembly and regulation of the T4P, with additional regulatory components and pathways implicated, it is unclear how these components and pathways interact to control these processes. In the current study, we used a global genomics-based random-mutagenesis technique, transposon directed insertion-site sequencing (TraDIS), coupled with a physical segregation approach, to identify all genes implicated in twitching motility-mediated biofilm expansion in P. aeruginosa. Our approach allowed identification of both known and novel genes, providing new insight into the complex molecular network that regulates this process in P. aeruginosa. Additionally, our data suggest that the flagellum-associated gene products have a differential effect on twitching motility, based on whether components are intra- or extracellular. Overall the success of our TraDIS approach supports the use of this global genomic technique for investigating virulence genes in bacterial pathogens
    corecore