5,342 research outputs found

    Decoupled Programs, Payment Incidence, and Factor Markets: Evidence from Market Experiments

    Get PDF
    We use laboratory market experiments to assess the impact of asymmetric knowledge of a per-unit subsidy and the effect of a decoupled annual income subsidy on factor market outcomes. Results indicate that when the subsidy is tied to the factor as a per-unit subsidy, regardless of full or asymmetric knowledge for market participants, subsidized factor buyers distribute nearly 22 percent of the subsidy to factor sellers. When the subsidy is fully decoupled from the factor, as is the case with the annual payment, payment incidence is mitigated and prices are not statistically different from the no-policy treatment.laboratory market experiments, agricultural subsidies, subsidy incidence, land market, ex ante policy analysis, Agricultural and Food Policy, Institutional and Behavioral Economics, Q18, D03, C92,

    Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse

    Full text link
    We present a joint experimental and theoretical study on strong-field photo-ionization of sodium atoms using chirped femtosecond laser pulses. By tuning the chirp parameter, selectivity among the population in the highly excited states 5p, 6p, 7p and 5f, 6f is achieved. Different excitation pathways enabling control are identified by simultaneous ionization and measurement of photoelectron angular distributions employing the velocity map imaging technique. Free electron wave packets at an energy of around 1 eV are observed. These photoelectrons originate from two channels. The predominant 2+1+1 Resonance Enhanced Multi-Photon Ionization (REMPI) proceeds via the strongly driven two-photon transition 4s←←3s4s\leftarrow\leftarrow3s, and subsequent ionization from the states 5p, 6p and 7p whereas the second pathway involves 3+1 REMPI via the states 5f and 6f. In addition, electron wave packets from two-photon ionization of the non-resonant transiently populated state 3p are observed close to the ionization threshold. A mainly qualitative five-state model for the predominant excitation channel is studied theoretically to provide insights into the physical mechanisms at play. Our analysis shows that by tuning the chirp parameter the dynamics is effectively controlled by dynamic Stark-shifts and level crossings. In particular, we show that under the experimental conditions the passage through an uncommon three-state "bow-tie" level crossing allows the preparation of coherent superposition states

    Energetic particles observed by ISEE-1 and ISEE-2 in a cusp diamagnetic cavity on 29 September 1978

    Get PDF
    International audienceObservations by the ISEE-1 and ISEE-2 spacecraft on 29 September 1978 show large CEP (Cusp Energetic Particle) fluxes while passing through the dayside magnetospheric cusp in near coincident orbits. The event was observed around 11:00 MLT between roughly 12:30 and 13:00 UT by ISEE-1 and 12:00 and 13:00 UT by ISEE-2. During these periods, both electron and ion fluxes increased by more than two orders of magnitude, with the electron flux showing a strong peak at a pitch angle of 90°. The solar wind was ~710 km s?1 and the Dst was ~?200 nT, suggesting the occurrence of a strong geomagnetic storm. The ISEE-1 and ISEE-2 observations, however, show no time-energy dispersion of the CEPs, leading us to believe that these particles could not be the result of substorm processes in the magnetotail. The local magnetic field was depressed and extremely turbulent. Changes in the magnitude of the magnetic field anticorrelate closely to variations of the electron flux. The observations in electron flux peaking at 90° and the close anticorrelation between the local magnetic field strength and electron flux are unique and provide evidence of a potential local source for these energetic particles

    The Impact of Massive Stars on the Formation of Young Stellar Clusters

    Get PDF
    Massive OB stars play an important role in the evolution of molecular clouds and star forming regions. The OB stars both photo--ionize molecular gas as well as sweep up and compress interstellar gas through winds, ionization fronts, and supernovae. In this contribution, we examine the effect massive stars have on the formation of young stellar clusters. We first discuss the processes by which OB stars destroy cluster--forming molecular cores, and hence terminate star formation. We overview observational evidence that OB stars forming in young stellar clusters destroy their parental cores on a timescale of 0.1 Myr, and we discuss some of the implications of this result. We then summarize extensive observations of the NGC 281 molecular cloud complex, and present evidence that two types of triggered star formation are occurring in this complex. Our goal is to underscore the impact massive stars have on cluster formation over distances ranging from 0.1 pc to 300 pc.Comment: 8 pages, Latex, to appear in "Hot Star Workshop III: The Earliest Phases of Massive Star Birth" (ed. P.A. Crowther

    A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES

    Get PDF
    This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton-Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers.open4

    Distinct fos-expressing neuronal ensembles in the ventromedial prefrontal cortex mediate food reward and extinction memories

    Get PDF
    In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in “neuronal ensembles.” Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration.Wefirst trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area
    • 

    corecore