5,886 research outputs found

    Vortex Structures Formed by the Interference of Sliced Condensates

    Get PDF
    We study the formation of vortices, vortex necklaces and vortex ring structures as a result of the interference of higher-dimensional Bose-Einstein condensates (BECs). This study is motivated by earlier theoretical results pertaining to the formation of dark solitons by interfering quasi one-dimensional BECs, as well as recent experiments demonstrating the formation of vortices by interfering higher-dimensional BECs. Here, we demonstrate the genericity of the relevant scenario, but also highlight a number of additional possibilities emerging in higher-dimensional settings. A relevant example is, e.g., the formation of a "cage" of vortex rings surrounding the three-dimensional bulk of the condensed atoms. The effects of the relative phases of the different BEC fragments and the role of damping due to coupling with the thermal cloud are also discussed. Our predictions should be immediately tractable in currently existing experimental BEC setups.Comment: 8 pages, 6 figures (low res). To appear in Phys. Rev. A. Full resolution preprint available at: http://www-rohan.sdsu.edu/~rcarrete/publications

    Faddeev calculations of break-up reactions with realistic experimental constraints

    Full text link
    We present a method to integrate predictions from a theoretical model of a reaction with three bodies in the final state over the region of phase space covered by a given experiment. The method takes into account the true experimental acceptance, as well as variations of detector efficiency, and eliminates the need for a Monte-Carlo simulation of the detector setup. The method is applicable to kinematically complete experiments. Examples for the use of this method include several polarization observables in dp break-up at 270 MeV. The calculations are carried out in the Faddeev framework with the CD Bonn nucleon-nucleon interaction, with or without the inclusion of an additional three-nucleon force.Comment: 18 pages, 9 figure

    N-(3,4-Dichloro­phen­yl)-3-oxo­butanamide

    Get PDF
    In the title compound. C10H9Cl2NO2, the acetamide residue is twisted out of the phenyl ring plane by 25.40 (9)°. An intra­molecular C—H⋯O close contact is observed. The N atom of the butanamide unit forms an inter­molecular N—H⋯O hydrogen bond with the symmetry-related carbonyl O atom, inter­linking mol­ecules into a C(4) chain along [100]. Additional C—H⋯O inter­molecular inter­actions and Cl⋯Cl contacts [3.4364 (8) Å] contribute to the stability of the crystal packing

    Hydrodynamic dispersion within porous biofilms

    Get PDF
    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport

    Spinor Bose-Einstein condensates in double well potentials

    Full text link
    We consider the statics and dynamics of F = 1 spinor Bose-Einstein condensates (BECs) confined in double well potentials. We use a two-mode Galerkin-type quasi-analytical approximation to describe the stationary states of the system. This way, we are able to obtain not only earlier results based on the single mode approximation (SMA) frequently used in studies of spinor BECs, but also additional modes that involve either two or all three spinor components of the F = 1 spinor BEC. The results based on this Galerkin-type decomposition are in good agreement with the analysis of the full system. We subsequently analyze the stability of these multi-component states, as well as their dynamics when we find them to be unstable. The instabilities of the symmetric or anti-symmetric states exhibit symmetry-breaking and recurrent asymmetric patterns. Our results yield qualitatively similar bifurcation diagrams both for polar (such as Na23) and ferromagnetic (such as Rb87) spinor BECs.Comment: 22 pages, 13 figures, J. Phys. A (to appear

    Relationship Between Self-Report and Observed Parenting Among Parents in Treatment Versus Not in Treatment Populations

    Get PDF
    Background: Most maltreatment, by definition, is a failure of parenting. However, even without maltreatment, poor parenting can lead to a variety of negative outcomes including social, emotional and behavioral problems. Given that parenting plays a key role in child outcomes, one of the foci of interventions are parenting programs. Interventions for parents must be evaluated using standardized assessment tools, which leads to an important question; how can we best assess parenting? Observational methods (observing a parent and child interact) are often regarded as the gold standard in the assessment of parental behaviors but are cumbersome to administer. Self-reports of parenting behaviors are the most commonly used measure due to ease of administration, but their validity may be questioned. The goal of this study is to examine the relationship between three observational measures of parenting and two self-report measures. Methods: Participants (n=133) were either parents who were receiving treatment at Metro-Atlanta drug courts or other caregivers. All participants completed self-report measures of parenting, and videotaped interaction task with a child. Videos were coded for a variety of behaviors, and two of those behaviors (affection and involvement) matched constructs that parents reported on in a self-report battery. Results: Correlations between self- report and observational measures for the constructs affection and involvement for the whole sample ranged from r = -.03 to.06 for affection, and r = -.05 to .08 for involvement, but none were statistically significant. The relationship between self-report and observed parenting by adult type and child age was also examined. However, none of the correlations were statistically significant. Conclusions: Although there were no significant correlations found between self-report and observational measures, existing research suggests that self-reports are not interchangeable with observational methods. In future studies, constructs used to compare self-reports and observational methods should examine how each relates to the outcomes. Furthermore, CAIC (observational tool) should also be examined in further detail. Keywords: Observation methods, self-report methods, parenting, behaviors: warmth and involvement, coerced population, non-coerced population, child ag

    Traveling Wave Solutions in a Chain of Periodically Forced Coupled Nonlinear Oscillators

    Get PDF
    Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts and annihilation of radial ones. Finally, we show that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes

    Legumes increase grassland productivity with no effect on nitrous oxide emissions

    Get PDF
    Aims: Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods: This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results: Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions: This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers

    Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Get PDF
    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.This study was financed by the UK Natural Environment Research Council (NERC) grant NE/G018278/1 and is a product of the Andes Biodiversity and Ecosystem Research Group consortium (www.andesconservation.org); Patrick Meir was also supported by ARC FT110100457
    corecore