32 research outputs found

    Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors

    Get PDF
    Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression. Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers. Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic

    Cancer-selective, single agent chemoradiosensitising gold nanoparticles

    Get PDF
    Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics

    Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA

    No full text
    The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.Funding for the initial HGB eDNA study was generously provided by the National Save the Sea Turtle Foundation under project name Fibropapillomatosis Training and Research Initiative (D.J.D.), a Welsh Government Sêr Cymru II and the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 663830-BU115 (D.J.D.). This research was also supported by Gumbo Limbo Nature Center d/b/a Friends of Gumbo Limbo (a 501c3 non-profit organization) through a generous donation through their Graduate Research Grant programme (J.A.F.) and by an Irish Research Council Government of Ireland Postgraduate Scholarship, under project no. GOIPG/2020/1056 (L.W.). Intentional human eDNA research was funded by D.J.D.’s University of Florida start-up funds. M.R.S. was supported by an EMBO long-term fellowship (ALTF 544-2021). We thank M. Q. Martindale, N. Condron, K. Yetsko, S. Creer, A. Pacetti, E. Ryan, C. Eastman and all of our generous co-authors on the wildlife and pathogen research papers for which these HGB samples were originally generated8,17. We thank P. Murphy and R. Rolfe for facilitating eDNA extraction of Irish samples in their lab in the Zoology Department, Trinity College Dublin, and A. Krstic, W. Kolch, A. G. Munoz and the Conway Core Facilities staff for facilitating qPCR of the Irish samples at Systems Biology Ireland and the Conway Institute of Biomolecular and Biomedical Research at University College Dublin. We also thank F. Duffy and I. Duffy for assistance with sampling; M. ten Cate and A. Whilde for gifting supplies; K. Foote, A. Rich and the NPS staff of the Fort Matanzas National Monument for valuable assistance with permitting and facilitating access to Rattlesnake Island and site selection; and S. Loesgen (University of Florida) for the SH-SY5Y cells. Finally, we thank the anonymous study participants who permitted us to collect their footprints and room air for human eDNA analysis, with full ethical approval and informed consent

    Inadvertent human genomic bycatch and intentional capture raise beneficial  applications and ethical concerns with environmental DNA

    No full text
    The feld of environmental DNA (eDNA) is advancing rapidly, yet human  eDNA applications remain underutilized and underconsidered. Broader  adoption of eDNA analysis will produce many well-recognized benefts  for pathogen surveillance, biodiversity monitoring, endangered and  invasive species detection, and population genetics. Here we show that  deep-sequencing-based eDNA approaches capture genomic information  from humans (Homo sapiens) just as readily as that from the intended  target species. We term this phenomenon human genetic bycatch (HGB).  Additionally, high-quality human eDNA could be intentionally recovered  from environmental substrates (water, sand and air), holding promise for  benefcial medical, forensic and environmental applications. However,  this also raises ethical dilemmas, from consent, privacy and surveillance  to data ownership, requiring further consideration and potentially novel  regulation. We present evidence that human eDNA is readily detectable from  ‘wildlife’ environmental samples as human genetic bycatch, demonstrate  that identifable human DNA can be intentionally recovered from  human-focused environmental sampling and discuss the translational and  ethical implications of such fndings. </p

    Environmental DNA monitoring of oncogenic viral shedding and genomic profiling of sea turtle fibropapillomatosis reveals unusual viral dynamics

    Get PDF
    Pathogen-induced cancers account for 15% of human tumors and are a growing concern for endangered wildlife. Fibropapillomatosis is an expanding virally and environmentally coinduced sea turtle tumor epizootic. Chelonid herpesvirus 5 (ChHV5) is implicated as a causative virus, but its transmission method and specific role in oncogenesis and progression is unclear. We applied environmental (e)DNA-based viral monitoring to assess viral shedding as a direct means of transmission, and the relationship between tumor burden, surgical resection and ChHV5 shedding. To elucidate the abundance and transcriptional status of ChHV5 across early, established, regrowth and internal tumors we conducted genomics and transcriptomics. We determined that ChHV5 is shed into the water column, representing a likely transmission route, and revealed novel temporal shedding dynamics and tumor burden correlations. ChHV5 was more abundant in the water column than in marine leeches. We also revealed that ChHV5 is latent in fibropapillomatosis, including early stage, regrowth and internal tumors; higher viral transcription is not indicative of poor patient outcome, and high ChHV5 loads predominantly arise from latent virus. These results expand our knowledge of the cellular and shedding dynamics of ChHV5 and can provide insights into temporal transmission dynamics and viral oncogenesis not readily investigable in tumors of terrestrial species
    corecore