4,889 research outputs found

    Stochastic Gravitational Wave Measurements with Bar Detectors: Dependence of Response on Detector Orientation

    Full text link
    The response of a cross-correlation measurement to an isotropic stochastic gravitational-wave background depends on the observing geometry via the overlap reduction function. If one of the detectors being correlated is a resonant bar whose orientation can be changed, the response to stochastic gravitational waves can be modulated. I derive the general form of this modulation as a function of azimuth, both in the zero-frequency limit and at arbitrary frequencies. Comparisons are made between pairs of nearby detectors, such as LIGO Livingston-ALLEGRO, Virgo-AURIGA, Virgo-NAUTILUS, and EXPLORER-AURIGA, with which stochastic cross-correlation measurements are currently being performed, planned, or considered.Comment: 17 pages, REVTeX (uses rcs, amsmath, hyperref, and graphicx style files), 4 figures (8 eps image files

    Searching for Galactic White Dwarf Binaries in Mock LISA Data using an F-Statistic Template Bank

    Full text link
    We describe an F-statistic search for continuous gravitational waves from galactic white-dwarf binaries in simulated LISA Data. Our search method employs a hierarchical template-grid based exploration of the parameter space. In the first stage, candidate sources are identified in searches using different simulated laser signal combinations (known as TDI variables). Since each source generates a primary maximum near its true "Doppler parameters" (intrinsic frequency and sky position) as well as numerous secondary maxima of the F-statistic in Doppler parameter space, a search for multiple sources needs to distinguish between true signals and secondary maxima associated with other, "louder" signals. Our method does this by applying a coincidence test to reject candidates which are not found at nearby parameter space positions in searches using each of the three TDI variables. For signals surviving the coincidence test, we perform a fully coherent search over a refined parameter grid to provide an accurate parameter estimation for the final candidates. Suitably tuned, the pipeline is able to extract 1989 true signals with only 5 false alarms. The use of the rigid adiabatic approximation allows recovery of signal parameters with errors comparable to statistical expectations, although there is still some systematic excess with respect to statistical errors expected from Gaussian noise. An experimental iterative pipeline with seven rounds of signal subtraction and re-analysis of the residuals allows us to increase the number of signals recovered to a total of 3419 with 29 false alarms.Comment: 29 pages, 11 figures; submitted to Classical and Quantum Gravit

    Regulation of Alternative Oxidase Activity by Pyruvate in Soybean Mitochondria

    Full text link

    Recovery of the X-Ray Transient QX Nor (=X1608-52) in Outburst and Quiescence

    Get PDF
    We present optical and near-IR observations of QX Nor, the counterpart to the recurrent soft X-ray transient X1608-52, after its reappearance following the X-ray outburst in February 1996. The object has been seen only once before, during an X-ray outburst in 1977. Data from 3-5 months after the outburst show the counterpart at a mean magnitude of R=20.2 and variable on timescales of days. A comparison with identical observations in 1995 implies that the object has brightened by at least 1.8 mag in R following the X-ray outburst. We also detected QX Nor in the IR in both quiescence and outburst. A faint source is visible in the J but not the R band in May 1995. These first observations in the quiescent state yield magnitudes and colors consistent with optical emission from a low mass companion in the binary system, as is true in other soft X-ray transients.Comment: 10 pages including 4 figures and 2 tables; Uses AASTeX 4.0; Accepted for publication in The Astrophysical Journal, Volume 485, August 20, 199

    Evolution of Hard X-Ray Spectra Along the Branches in Cir X-1

    Full text link
    Using the data from the PCA and HEXTE on board the RXTE satellite, we investigate the evolution of the 3-200 keV spectra of the peculiar low mass X-ray binary (LMXB) Cir X-1 along the branches on its hardness-intensity diagram (HID) from the vertical horizontal branch (VHB), through the horizontal horizontal branch (HHB) and normal branch (NB), to the flaring branch (FB). We detect a power-law hard component in the spectra. It is found that the derived photon indices (Γ\Gamma) of the power-law hard component are correlated with the position on the HID. The power-law component dominates the X-ray emission of Cir X-1 in the energy band higher than 20\sim 20 keV. The fluxes of the power-law component are compared with those of the bremsstrahlung component in the spectra. A possible origin of the power-law hard component is discussed.Comment: 14 pages, 5 figures, ApJ Letter accepte

    The density and pressure of helium nano-bubbles encapsulated in silicon

    Full text link
    The 1s2>1s2p(1P)1s^2->1s2p(^1P) excitation in confined and compressed helium atoms in either the bulk material or encapsulated in a bubble is shifted to energies higher than that in the free atom. For bulk helium, the energy shifts predicted from non-empirical electronic structure computations are in excellent agreement with the experimentally determined values. However, there are significant discrepancies both between the results of experiments on different bubbles and between these and the well established descriptions of the bulk. A critique is presented of previous attempts to determine the densities in bubbles by measuring the intensities of the electrons inelastically scattered in STEM experiments. The reported densities are untrustworthy because it was assumed that the cross section for inelastic electron scattering was the same as that of a free atom whilst it is now known that this property is greatly enhanced for atoms confined at significant pressures. It is shown how experimental measurements of bubbles can be combined with data on the bulk using a graphical method to determine whether the behavior of an encapsulated guest differs from that in the bulk material. Experimental electron energy loss data from an earlier study of helium encapsulated in silicon is reanalyzed using this new method to show that the properties of the helium in these bubbles do not differ significantly from those in the bulk thereby enabling the densities in the bubbles to be determined. These enable the bubble pressures to be deduced from a well established experimentally derived equation of state. It is shown that the errors of up to 80% in the incorrectly determined densities are greatly magnified in the predicted pressures which can be too large by factors of over seven. This has major practical implications for the study of radiation damage of materials exposed to α\alpha particle bombardment

    A fast stroboscopic spectral method for rotating systems in numerical relativity

    Full text link
    We present a numerical technique for solving evolution equations, as the wave equation, in the description of rotating astrophysical compact objects in comoving coordinates, which avoids the problems associated with the light cylinder. The technique implements a fast spectral matching between two domains in relative rotation: an inner spherical domain, comoving with the sources and lying strictly inside the light cylinder, and an outer inertial spherical shell. Even though the emphasis is placed on spectral techniques, the matching is independent of the specific manner in which equations are solved inside each domain, and can be adapted to different schemes. We illustrate the strategy with some simple but representative examples.Comment: 16 pages, 15 figure

    A scalable FPGA-based architecture for depth estimation in SLAM

    Get PDF
    The current state of the art of Simultaneous Localisation and Mapping, or SLAM, on low power embedded systems is about sparse localisation and mapping with low resolution results in the name of efficiency. Meanwhile, research in this field has provided many advances for information rich processing and semantic understanding, combined with high computational requirements for real-time processing. This work provides a solution to bridging this gap, in the form of a scalable SLAM-specific architecture for depth estimation for direct semi-dense SLAM. Targeting an off-the-shelf FPGA-SoC this accelerator architecture achieves a rate of more than 60 mapped frames/sec at a resolution of 640×480 achieving performance on par to a highly-optimised parallel implementation on a high-end desktop CPU with an order of magnitude improved power consumption. Furthermore, the developed architecture is combined with our previous work for the task of tracking, to form the first complete accelerator for semi-dense SLAM on FPGAs, establishing the state of the art in the area of embedded low-power systems

    NASA Light Emitting Diode Medical Applications from Deep Space to Deep Sea

    Get PDF
    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients’ chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs
    corecore