56 research outputs found

    Emotion recognition and processing style in children with an intellectual disability

    Get PDF
    Research aims: People with an intellectual disability generally have poorer emotion recognition than their typically developing peers, but there is limited research on how processing style might influence this. Our study aimed to explore this. Methods: Children with (n = 45) and without (n = 57) an intellectual disability completed an emotion recognition naming task and a processing style task. A path mediation model was used to evaluate whether having an intellectual disability predicted poorer emotion recognition and whether this was mediated by a more local processing style. Results: We found that, while children with an intellectual disability were significantly less accurate at emotion recognition, having a local processing preference was not a significant factor in this. Conclusion: The results of the present study may be helpful for nurses who are involved in developing, delivering and evaluating interventions to improve the emotion recognition of people with an intellectual disability

    X-Ray Studies of the Abell 3158 Galaxy Cluster with eROSITA

    Get PDF
    The most nearby clusters are the best places to study physical and enrichment effects in the faint cluster outskirts. A3158 located at z=0.059 is quite extended with a characteristic radius r200_{200}=23.95 arcmin. In 2019, A3158 was observed as a calibration target in a pointed observation with the eROSITA telescope onboard the SRG mission. We determined 1d temperature, abundance and normalisation profiles from eROSITA and XMM-Newton and Chandra data as well as 2d maps of temperature distribution from eROSITA data. The velocity dispersion was determined and the cluster mass was calculated. The overall temperature was measured to be 4.725±\pm 0.035 keV. The profiles of eROSITA all agree on a ~10% level with those determined with XMM-Newton and Chandra data. From the temperature map we see that the cluster lacks a cool core, as noted before. The presence of a previously detected off-centre cool clump West of the central cluster region is observed. Furthermore there is a bow shaped edge near the location of the cool gas clump West of the cluster centre. An extension of gas is detected for the first time further out in the West. The velocity dispersion of the cluster was measured to be 1058±\pm41 km s−1^{-1}. The total mass was determined as M200M_{200}=1.38±\pm 0.25x1015^{15} M⊙M_{\odot}. The mass estimate from the M-T relation is significantly lower at M200_{200}=5.09±\pm 0.59x1014M⊙^{14}M_{\odot}. An extended X-ray source located South of the cluster also coincides with a galaxy overdensity with redshifts in the range 0.05<z<0.07. These are indications that the cluster may be undergoing merger activity. Another extended source located North of the cluster is detected in X-rays and coincides with an overdensity of galaxies with redshifts in the range of 0.070<z<0.077. This is likely a background cluster not related to A3158. Additionally a known SPT cluster at z=0.53 was detected.Comment: 14 pages, 17 figures in the main text, and 3 figures in the appendix. Accepted by A&A for the Special Issue: The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG Missio

    X-ray studies of the Abell 3158 galaxy cluster with eROSITA

    Get PDF
    Context. The most nearby clusters are the best places for studying physical and enrichment effects in the faint cluster outskirts. The Abell 3158 cluster (A3158), located at z = 0.059, is quite extended with a characteristic radius r200_{200} = 23.95 arcmin. The metal distribution in the outskirts of this cluster has previously been studied with XMM-Newton. In 2019, A3158 was observed as a calibration target in a pointed observation with the eROSITA telescope on board the Spektrum-Roentgen-Gamma mission. Bright large clusters, such as A3158, are ideal for studying the metal distribution in the cluster outskirts, along with the temperature profile and morphology. With the deeper observation time of the eROSITA telescope, these properties can now be studied in greater detail and at larger radii. Furthermore, bright nearby clusters are ideal X-ray instrumental cross-calibration targets as they cover a large fraction of the detector and do not vary in time. Aims. We first compare the temperature, metal abundance, and normalisation profiles of the cluster from eROSITA with previous XMM-Newton and Chandra data. Following this calibration work, we investigate the temperature and metallicity of the cluster out to almost r200_{200}, measure the galaxy velocity dispersion, and determine the cluster mass. Furthermore, we search for infalling clumps and background clusters in the field. Methods. We determined 1D temperature, abundance, and normalisation profiles from both eROSITA and XMM-Newton data as well as 2D maps of temperature and metal abundance distribution from eROSITA data. The velocity dispersion was determined and the cluster mass was calculated from the mass–velocity dispersion (M200_{200}−συ_{υ}) relation. Galaxy density maps were created to enable a better understanding of the structure of the cluster and the outskirts. Results. The overall (i.e. in the range 0.2−0.5r500_{500}) temperature was measured to be 5.158 ± 0.038 keV. The temperature, abundance, and normalisation profiles of eROSITA all agree to within a confidence level of about 10% with those we determined using XMM-Newton and Chandra data, and they are also consistent with the profiles published previously by the X-COP project. The cluster morphology and surface brightness profile of cluster Abell 3158 appear to be regular at a first glance. Clusters that have such profiles typically are relaxed and host cool cores. However, the temperature profile and map show that the cluster lacks a cool core, as was noted before. Instead, an off-centre cool clump lies to the west of the central cluster region, as reported previously. These are indications that the cluster may be undergoing some sloshing and merger activity. Furthermore, there is a bow-shaped edge near the location of the cool gas clump west of the cluster centre. Farther out west of the X-ray images of A3158, an extension of gas is detected. This larger-scale extension is described here for the first time. The gas metallicity (~0.2 solar) measured in the outskirts (»r500_{500}) is consistent with an early-enrichment scenario. The velocity dispersion of the cluster member galaxies is measured to be 1058 ± 41 kms−1^{-1} based on spectroscopic redshifts of 365 cluster member galaxies and the total mass is determined as M200_{200},c = 1.38 ± 0.25 × 1015^{15} M⊙. The mass estimate based on the X-ray temperature is significantly lower at M200 = 6.20 ± 0.75 × 1014^{14} M⊙, providing further indications that merger activity boosts the velocity dispersion and/or biases the temperature low. An extended X-ray source located south of the field of view also coincides with a galaxy overdensity with spectroscopic redshifts in the range 0.05 < z < 0.07. This source further supports the idea that the cluster is undergoing merger activity. Another extended source located north of the field of view is detected in X-rays and coincides with an overdensity of galaxies with spectroscopic redshifts in the range of 0.070 < z < 0.077. This is likely a background cluster that is not directly related to A3158. Additionally, the known South Pole Telescope cluster SPT-CL J0342-5354 at z = 0. 53 was detected

    The Abell 3391/95 galaxy cluster system:A 15 Mpc intergalactic medium emission filament, a warm gas bridge, infalling matter clumps, and (re-) accelerated plasma discovered by combining SRG/eROSITA data with ASKAP/EMU and DECam data

    Get PDF
    We used dedicated SRG/eROSITA X-ray, ASKAP/EMU radio, and DECam optical observations of a 15 sq.deg region around the interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. We trace the irregular morphology of warm-hot gas of the main clusters from their centers out to well beyond their characteristic radii, r200r_{200}. Between the two main cluster systems, we observe an emission bridge; thanks to eROSITA's unique soft response and large field of view, we discover tantalizing hints for warm gas. Several matter clumps physically surrounding the system are detected. For the "Northern Clump," we provide evidence that it is falling towards A3391 from the hot gas morphology and radio lobe structure of its central AGN. Many of the extended sources in the field detected by eROSITA are known clusters or new clusters in the background, including a known SZ cluster at redshift z=1. We discover an emission filament north of the virial radius, r100r_{100}, of A3391 connecting to the Northern Clump and extending south of A3395 towards another galaxy cluster. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA observation. The DECam galaxy density map shows galaxy overdensities in the same regions. The new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution compared to the Magneticum simulation. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure.Comment: 21 pages plus 16 figures in the main text and 13 pages plus 29 figures as appendix. Astronomy & Astrophysics, accepted on November 3, 2020. A press release, full resolution images plus additional images and movies are available at https://astro.uni-bonn.de/~reiprich/A3391_95

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore