12,370 research outputs found

    Controlled environment life support system: Growth studies with potatoes

    Get PDF
    Results of experiments conducted to maximize the productivity of potatoes grown under controlled environmental conditions are discussed. A variety of parameters is examined which affect potato growth, specifically, photoperiod, light intensity, temperature, nitrogen nutrition, carbon dioxide concentration and culture techniques. These experiments were conducted using five different cultivars, Russet Burbank, Norchip, Superior, Kennebec and Norland. To achieve high productivity, three specific objectives were explored: (1) to develop effective cultural procedures, (2) to determine the most effective photoperiod and (3) to develop a mist culture system. It is felt that the productivity obtained in this study is below the maximum that can be obtained. High irradiance levels coupled with tuber-promoting conditions such as cooler temperatures, increased CO2 levels and lowered nitrogen concentrations should allow increases in tuber production. Tuberization appears to be accelerated by short daylengths although final yields are not increased. Mist culture techniques have not yet produced fully developed tubers. The use of supporting media and alteration of the nitrogen content of the mist solution are being explored as a way to allow tubers to develop to maturity

    Utilization of potatoes in bioregenerative life support systems

    Get PDF
    Data on the tuberization, harvest index, and morphology of 2 cvs of white potato (Solanum tuberosum L.) grown at 12, 16, 20, 24 and 28 C, 250, 400 and 550 micromol/s/m photosynthetic photon flux (PPF), 350, 1000 and 1600 microliter 1 sup -1 CO2 is presented. A productivity of 21.9 g/m day sup -1 of edible tubers from a solid stand of potatoes grown for 15 weeks with continuous irradiation at 400 micromol/s/m, 16 C and 1000 microliter 1 sup -1 CO2 was obtained. This equates to an area of 34.3 sq m being required to provide 2800 kcal of potatoes per day for a human diet. Separated plants receiving side lighting have produced 32.8 g/m day sup -1 which equates to an area of 23.6 sq m to provide 2800 kcal. Studies with side lighting indicate that productivities in this range should be realized from potatoes. Glycoalkaloid levels in tubers of controlled environment grown plants are within the range of levels found in tubers of field grown plants. The use and limitation of recirculating solution cultures for potato growth is discussed

    Beam profiles measured with thermoluminescent dosimeters

    Get PDF
    Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined

    Reprints of Articles

    Get PDF

    Effects of atmospheric CO2 on photosynthetic characteristics of soybean leaves

    Get PDF
    Soybean (Glycine max. cv. McCall) plants were grown at 500, 1000, and 2000 umol mol (exp -1) CO2 for 35 days with a photosynthetic photon flux of 300 umol m (exp -2) s (-1). Individual leaves were exposed to step changes of photosynthetic photon flux to study CO2 assimilation rates (CAR), i.e., leaf net photosynthesis. In general, CAR increased when CO2 increased from 500 to 1000 umol mol (exp -1), but not from 1000 to 2000 umol mol (exp -1). Regardless of the CO2 level, all leaves showed similar CAR at similar CO2 and PPF. This observation contrasts with reports that plants tend to become 'lazy' at elevated CO2 levels over time. Although leaf stomatal conductance (to water vapor) showed diurnal rhythms entrained to the photoperiod, leaf CAR did not show these rhythms and remained constant across the light period, indicating that stomatal conductance had little effect on CAR. Such measurements suggest that short-term changes in CO2 exchange dynamics for a controlled ecological life support system can be closely predicted for an actively growing soybean crop

    Temporal Ordering in Quantum Mechanics

    Full text link
    We examine the measurability of the temporal ordering of two events, as well as event coincidences. In classical mechanics, a measurement of the order-of-arrival of two particles is shown to be equivalent to a measurement involving only one particle (in higher dimensions). In quantum mechanics, we find that diffraction effects introduce a minimum inaccuracy to which the temporal order-of-arrival can be determined unambiguously. The minimum inaccuracy of the measurement is given by dt=1/E where E is the total kinetic energy of the two particles. Similar restrictions apply to the case of coincidence measurements. We show that these limitations are much weaker than limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more accurately than time-of-arrival. To appear in Journal of Physics

    Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Get PDF
    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area

    Quantum Geometrodynamics I: Quantum-Driven Many-Fingered Time

    Full text link
    The classical theory of gravity predicts its own demise -- singularities. We therefore attempt to quantize gravitation, and present here a new approach to the quantization of gravity wherein the concept of time is derived by imposing the constraints as expectation-value equations over the true dynamical degrees of freedom of the gravitational field -- a representation of the underlying anisotropy of space. This self-consistent approach leads to qualitatively different predictions than the Dirac and the ADM quantizations, and in addition, our theory avoids the interpretational conundrums associated with the problem of time in quantum gravity. We briefly describe the structure of our functional equations, and apply our quantization technique to two examples so as to illustrate the basic ideas of our approach.Comment: 11, (No Figures), (Typeset using RevTeX
    corecore