809 research outputs found

    Impact of Cardio-Renal-Metabolic Comorbidities on Cardiovascular Outcomes and Mortality in Type 2 Diabetes Mellitus

    Get PDF
    BACKGROUND: We evaluated the incremental contribution of chronic kidney disease (CKD) to the risk of major adverse cardiovascular (CV) events (MACE), heart failure (HF), and all-cause mortality (ACM) in type 2 diabetes mellitus (T2DM) patients and its importance relative to the presence of other cardio-renal-metabolic (CaReMe) comorbidities. METHODS: Patients (≄40 years) were identified at the time of T2DM diagnosis from US (Humedica/Optum) and UK (Clinical Practice Research Datalink) databases. Patients were monitored post-diagnosis for modified MACE (myocardial infarction, stroke, ACM), HF, and ACM. Adjusted hazard ratios were obtained using Cox proportional-hazards regression to evaluate the relative risk of modified MACE, HF, and ACM due to CKD. Patients were stratified by the presence or absence of atherosclerotic CV disease (ASCVD) and age. RESULTS: Between 2011 and 2015, of 227,224 patients identified with incident T2DM, 40,063 (17.64%) had CKD. Regardless of prior ASCVD, CKD was associated with higher risk of modified MACE, HF, and ACM; this excess hazard was more pronounced in older patients with prior ASCVD. In time-to-event analyses in the overall cohort, patients with T2DM + CKD or T2DM + CKD + hypertension + hyperlipidemia had increased risks for modified MACE, HF, and ACM versus patients with T2DM and no CaReMe comorbidities. Patients with CKD had higher risks for and shorter times to modified MACE, HF, and ACM than those without CKD. CONCLUSION: In T2DM patients, CKD presence was associated with higher risk of modified MACE, HF, and ACM. This may have risk-stratification implications for T2DM patients based on background CKD and highlights the potential importance of novel renoprotective strategies

    Lactate signalling regulates fungal ÎČ-glucan masking and immune evasion

    Get PDF
    AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin

    A phenomenological description of quantum-gravity-induced space-time noise

    Get PDF
    I propose a phenomenological description of space-time foam and discuss the experimental limits that are within reach of forthcoming experiments.Comment: 10 pages, LaTex, 1 figure. Short paper, omitting most technical details. More detailed analysis was reported in gr-qc/010400

    Complex-Distance Potential Theory and Hyperbolic Equations

    Full text link
    An extension of potential theory in R^n is obtained by continuing the Euclidean distance function holomorphically to C^n. The resulting Newtonian potential is generated by an extended source distribution D(z) in C^n whose restriction to R^n is the delta function. This provides a natural model for extended particles in physics. In C^n, interpreted as complex spacetime, D(z) acts as a propagator generating solutions of the wave equation from their initial values. This gives a new connection between elliptic and hyperbolic equations that does not assume analyticity of the Cauchy data. Generalized to Clifford analysis, it induces a similar connection between solutions of elliptic and hyperbolic Dirac equations. There is a natural application to the time-dependent, inhomogeneous Dirac and Maxwell equations, and the `electromagnetic wavelets' introduced previously are an example.Comment: 25 pages, submited to Proceedings of 5th Intern. Conf. on Clifford Algebras, Ixtapa, June 24 - July 4, 199

    An interferometric gravitational wave detector as a quantum-gravity apparatus

    Full text link
    As a consequence of the extreme precision of the measurements it performs, an interferometric gravitational wave detector is a macroscopic apparatus for which quantum effects are not negligible. I observe that this property can be exploited to probe some aspects of the interplay between Quantum Mechanics and Gravity.Comment: LaTex, 7 pages. Version accepted for publication in Nature. Under press embargo until publicatio

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Classical and quantum: a conflict of interest

    Full text link
    We highlight three conflicts between quantum theory and classical general relativity, which make it implausible that a quantum theory of gravity can be arrived at by quantising classical gravity. These conflicts are: quantum nonlocality and space-time structure; the problem of time in quantum theory; and the quantum measurement problem. We explain how these three aspects bear on each other, and how they point towards an underlying noncommutative geometry of space-time.Comment: 15 pages. Published in `Gravity and the quantum' [Essays in honour of Thanu Padmanabhan on the occasion of his sixtieth birthday] Eds. Jasjeet Singh Bagla and Sunu Engineer (Springer, 2017

    Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

    Get PDF
    The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests. To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species
    • 

    corecore