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Abstract  1 

IntroductionBackground: We evaluated the incremental contribution of chronic kidney disease 2 

(CKD) to the risk of major adverse cardiovascular events (MACE), heart failure (HF), and all-cause 3 

mortality (ACM) in type 2 diabetes mellitus (T2DM) patients and its importance relative to the 4 

presence of other cardio-renal-metabolic comorbidities. 5 

Methods: Patients (≥40 years) were identified at the time of T2DM diagnosis from US 6 

(Humedica/Optum) and UK (Clinical Practice Research Datalink) databases. Patients were monitored 7 

post-diagnosis for modified MACE (myocardial infarction, stroke, ACM), HF, and ACM. Adjusted 8 

hazard ratios were obtained using Cox proportional-hazards regression to evaluate the relative risk 9 

of modified MACE, HF, and ACM due to CKD. Patients were stratified by presence or absence of 10 

atherosclerotic cardiovascular disease (ASCVD) and age. 11 

Results: Between 2011–2015, of 227,224 patients identified with incident T2DM, 40,063 (17.64%) 12 

had CKD. Regardless of prior ASCVD, CKD was associated with higher risk of modified MACE, HF, and 13 

ACM; this excess hazard was more pronounced in older patients with prior ASCVD. In time-to-event 14 

analyses in the overall cohort, patients with T2DM + CKD or T2DM + CKD + hypertension + 15 

hyperlipidemia had increased risks for modified MACE, HF and ACM versus patients with T2DM and 16 

no cardio-renal-metabolic comorbidities. Patients with CKD had higher risks for and shorter times to 17 

modified MACE, HF, and ACM than those without CKD. 18 

Conclusions: In T2DM patients, CKD presence was associated with higher risk of modified MACE, HF, 19 

and ACM. This may have risk-stratification implications for T2DM patients based on background CKD 20 

and highlights the potential importance of novel renoprotective strategies. 21 
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Introduction 22 

Diabetes mellitus is the most common cause of chronic kidney disease (CKD) and end-stage renal 23 

disease (ESRD) [1], with up to 33.2% of patients with type 2 diabetes mellitus (T2DM) developing 24 

CKD over a 4-year follow-up [2]. In addition to a strong association with diabetes, the prevalence of 25 

CKD increases with other cardiovascular (CV) risk factors such as hypertension (HTN), hyperlipidemia 26 

(HPLD), and heart failure (HF) [3-6]. Common underlying mechanisms and relationships between 27 

these diseases are increasingly being recognized as part of various sets of cardio-renal-metabolic 28 

(“CaReMe”) comorbidities [7]. CaReMe comorbidities are highly prevalent in adults with T2DM [7], 29 

with >80% of patients with T2DM having HTN and HPLD and 20% having CKD, illustrating the need to 30 

target multiple risk factors in a coordinated fashion in these patients. Although much focus has been 31 

placed on risk factors of HTN and HPLD, the contribution of CKD to the risk of mortality and CV 32 

complications, including HF, is incompletely understood in patients with T2DM [8].  33 

 34 

From a clinical perspective, the presence of CKD and its essential role in perpetuating the 35 

development of adverse CV outcomes has not yet gained as wide an appreciation among clinicians 36 

as other traditional risk factors, such as HTN or hypercholesterolemia. This paradigm, however, may 37 

be changing, given that kidney disease is being used to identify patients at high CV risk in recent CV 38 

outcomes trials. Furthermore, recent clinical trials with sodium-glucose cotransporter-2 (SGLT2) 39 

inhibitors, glucagon-like peptide-1 (GLP1) receptor agonists, and other agents in patients with T2DM 40 

have demonstrated improvements in kidney and CV outcomes, further emphasizing a critical link 41 

between heart and kidney disease [9-12]. It is therefore important to understand the relative 42 

contribution of CKD to major adverse CV events (MACE), HF, and all-cause mortality (ACM) in 43 

patients with T2DM, both to improve risk stratification of patients and, potentially, to guide 44 

treatment options. Accordingly, we assessed the incremental relationship of CKD with the risk of 45 

MACE, HF, and ACM in a large real-world international cohort of patients with T2DM. 46 

 47 

Material and Methods 48 

Databases and study design 49 

The analyses were performed using data from Humedica/Optum, Clinical Practice Research Datalink 50 

(CPRD), and the combined data from both databases. The Humedica/Optum database includes 51 

electronic health records (EHR) from medical groups, integrated delivery networks, and hospital 52 

systems and linked outpatient, inpatient, and pharmaceutical claims and laboratory data from 53 

privately insured patients across the United States (US). EHR data are available for approximately 30 54 
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million individuals across 38 states in the US and claims data are available for 12–14 million patients 55 

annually across all 50 states [13, 14]. 56 

 57 

The CPRD primary care database is a robust data source that includes demographics, symptoms, 58 

tests, diagnoses, therapies, health-related behaviors, and secondary-care referrals. It comprises 59 

anonymized medical records from general practitioners that cover more than 11.3 million patients 60 

from 674 general practices in the United Kingdom (UK). Approximately 6.9% of the UK population is 61 

included with 4.4 million active (alive and currently registered) patients meeting the quality criteria 62 

[15]. In summary, the patient populations in both Humedica/Optum and CPRD databases broadly 63 

represent the demographic and geographic breakdown of the respective populations in the US and 64 

UK. De-identified patient data were integrated with claims, prescription, and practice management 65 

data to generate a comprehensive and longitudinal perspective of clinical care. No informed consent 66 

was required according to CPRD and Humedica standard operating procedures. 67 

 68 

Read codes in the CPRD and International Classification of Diseases, Ninth Revision (ICD-9) codes in 69 

Humedica/Optum were used to identify diagnoses and procedures. Index T2DM diagnoses were 70 

identified as one inpatient diagnosis of T2DM or two outpatient diagnoses for T2DM within 365 days 71 

(latter date served as the index), or two of the following criteria (latter date of the two served as the 72 

index): 1) Outpatient diagnoses for T2DM, 2) Use of a non-insulin antihyperglycemic agent, 3) 73 

Abnormal laboratory test of fasting blood glucose >6.94 mmol/L (125 mg/dL) or glycated 74 

hemoglobin (HbA1c) ≥48 mmol/mol (6.5%). CKD was identified by ICD-9/Read codes. If a patient had 75 

diagnoses for multiple CKD stages during the baseline period, the highest stage was recorded. HF in 76 

the baseline period was identified as any HF diagnosis. HF outcomes in the follow-up period were 77 

identified as HF hospitalizations (hHF). In the CPRD, hHF was identified by inpatient healthcare 78 

records with a primary diagnosis of HF. In Humedica EHR data, hHF was identified as an admitting 79 

diagnosis for HF, whereas in the Humedica claims data hHF was identified as a primary inpatient 80 

diagnosis of HF (first diagnosis field). 81 

 82 

For the study cohort, the major inclusion criterion was patients with index T2DM events between 83 

January 1, 2011, and March 31, 2015. The exclusion criteria were: 1) Patients with a diagnosis of 84 

type 1 diabetes mellitus prior to the index event, 2) Gestational diabetes within 1 year prior to the 85 

index event, 3) Less than 365 days of enrollment prior to the index event, 4) Less than 18 years old at 86 

the index event, 5) Use of insulin before the index date event, 6) History of solid organ 87 

transplantation.  88 
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 89 

Outcome measures 90 

Patients were followed post-T2DM diagnosis for modified MACE, HF, and ACM. Modified MACE 91 

components were defined as myocardial infarction (MI; the presence of one inpatient diagnostic 92 

code for MI), stroke (the presence of one inpatient diagnostic code for hemorrhagic or ischemic 93 

stroke), and ACM (the presence of one diagnostic code for a discharge status of death and diagnostic 94 

codes for coronary artery disease or cerebrovascular disease). 95 

 96 

Statistical analyses 97 

Patients with T2DM were stratified according to the presence of CaReMe comorbidities at the time 98 

of T2DM diagnosis (T2DM only; HTN and HPLD; CKD; or CKD, HTN, and HPLD). The cumulative 99 

probability of time to event was presented with Kaplan–Meier plots. Patients aged ≥40 years with 100 

T2DM were included in the analysis and were additionally stratified based on presence or absence of 101 

prior atherosclerotic CV disease (ASCVD) and by age: 40 to <65 years, 65 to <75 years, and ≥75 years. 102 

Adjusted hazard ratios (HRs) and their 95% confidence intervals (CIs) were obtained by a stratified 103 

Cox proportional-hazards regression model, adjusting for age at index, sex, race, and comorbidities 104 

(MI, stroke, transient ischemic attack, atrial fibrillation, dysrhythmia, alcoholic fatty liver disease, 105 

hepatitis B, hepatitis C, HIV, peripheral artery disease, cancer) at baseline. Age and sex were forced 106 

into the model and other covariates (which could differ for each model) with p-values <0.1 were 107 

retained in the final model. Smoking status, body mass index, systolic blood pressure, HbA1c, and 108 

low-density lipoprotein cholesterol were not included in the models because of the high percentage 109 

of missing values for these variables. All analyses were done using SAS v9.4 (SAS Institute, Cary, NC). 110 

 111 

Results 112 

Study cohort 113 

Between 2011–2015, a total of 227,224 patients met eligibility criteria, of whom 17.64% had 114 

prevalent CKD (9.54% stage 2, 6.33% stage 3, 1.1% stage 4, 0.67% stage 5) at the time of T2DM 115 

diagnosis (Figure 1). The demographic and clinical characteristics shown for the four CaReMe 116 

combinations are shown in Table 1, with further details shown in Supplementary Tables  117 

1–2.  118 

 119 

Overall (based on CPRD data), patients with T2DM and CKD were older, a higher proportion were 120 

women, and had better glycemic control versus those with either T2DM alone or 121 

T2DM + HTN + HPLD. A greater proportion of patients with T2DM and CKD had a prior history of MI, 122 
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stroke/transient ischemic attack, HF, dysrhythmia/atrial fibrillation, or peripheral artery disease 123 

compared with patients in the T2DM alone or T2DM + HTN + HPLD cohorts (Table 1). The median 124 

follow-up times for patients with T2DM alone, T2DM + CKD, and T2DM + HTN + HPLD were 3.2 125 

years, 2.7 years, and 3.0 years, respectively. 126 

 127 

Missing data were much higher in the Humedica database than in the CPRD database and therefore 128 

the combined missing values were closer to those in the Humedica database. In Humedica, among 129 

patients with T2DM only, greater than 90% of values were missing for systolic blood pressure, body 130 

mass index, HbA1c, and estimated glomerular filtration rate (eGFR). In patients with 131 

T2DM + HTN + HPLD these values were missing for more than 75% of patients. In patients with CKD 132 

with or without HTN + HPLD, missing data were less than 35% for these laboratory measurements 133 

and was less than 20% for eGFR. 134 

 135 

CaReMe comorbidities, CV outcomes, and mortality 136 

In unadjusted analyses (Figure 2), patients who had CKD as one of their CaReMe comorbidities had 137 

shorter times to modified MACE, HF, and ACM than did patients without CKD. After controlling for 138 

potential confounders, the presence of T2DM + CKD was associated with higher risks of modified 139 

MACE, HF, and ACM versus patients with T2DM alone, and when compared with patients with 140 

background T2DM + HTN + HPLD (Table 2). 141 

 142 

Subgroup analyses of patients with and without established ASCVD 143 

In patients with and without established ASCVD the presence of T2DM + CKD + HTN + HPLD was 144 

generally associated with a higher risk of modified MACE and ACM compared with patients that had 145 

T2DM only. In both subgroups the rate of hHF generally increased with age and with CKD stage, 146 

although CIs of unadjusted rates overlapped (Supplementary Tables 3–4). For all outcomes, CKD 147 

stage 4 conveyed a much higher risk than all other cohorts. Adjusted hazard ratios (95% CI) for 148 

modified MACE, HF, and ACM for CKD stage 4 patients relative to T2DM-only patients were 2.44 149 

(2.23, 2.67), 3.83 (3.33, 4.40), and 3.06 (2.70, 3.48) without ASCVD and 1.58 (1.38, 1.81), 1.86 (1.57, 150 

2.21), and 2.54 (2.12, 3.04) in patients with ASCVD, respectively. In general (across all ages and 151 

patients with or without prior ASCVD), the presence of CKD—regardless of the presence of HTN and 152 

HPLD—was associated with higher risks of modified MACE, HF, and ACM, compared with patients 153 

with T2DM only. 154 

 155 

Discussion 156 
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In this analysis of two large databases, patients with prevalent CKD at the time of T2DM diagnosis 157 

had higher risks of modified MACE, HF, and ACM. The additional presence of CKD was associated 158 

with higher risks of modified MACE, HF, and ACM versus the presence of HTN and/or HPLD without 159 

CKD. Although previous epidemiological studies have reported a relationship between CKD and CV 160 

outcomes, these studies did not generally focus on patients with diabetes [8, 16, 17], and very little, 161 

until now, had been published in incident T2DM cohorts. Our findings emphasize the magnitude of 162 

this risk and suggest the possible importance of identifying novel strategies to augment renal 163 

protection in patients with T2DM. 164 

 165 

Over the past 20 years, rates of MI and stroke have declined in patients with T2DM, possibly because 166 

of better pharmacological control of CV risk factors, such as with the use of statins [18]. However, 167 

CKD and end-stage kidney disease rates have remained essentially stable, and renal complications 168 

are highly prevalent. These rates are even higher in patients with CVD [19], illustrating the important 169 

relationship between CKD and CVD. From a mechanistic perspective, complex and overlapping 170 

pathways have been implicated in the pathogenesis of CV and renal complications in T2DM, and the 171 

overlap between these conditions. Accordingly, treatment of HF, ischemic CVD, and CKD in the 172 

presence of diabetes has focused on blockade of the renin–angiotensin–aldosterone system (RAAS) 173 

[20]. Reducing hyperglycemic burden in patients with T2DM has failed to reduce CV or HF risk, and 174 

only has a modest effect on CKD progression [21]. Advances in the treatment of patients with T2DM 175 

around reducing CV and renal risk have been made more recently with SGLT2 inhibitors and GLP1 176 

receptor agonists, although end-organ protective effects appear to be largely independent of 177 

glucose-lowering effects.  178 

 179 

Heart failure is one of the most common CV complications observed in patients with CKD, occurring 180 

more frequently than CV death [22]. Moreover, co-existent HF and CKD in the setting of T2DM is 181 

associated with an adverse prognosis [23]. For example, in previous adjusted analyses, patients with 182 

T2DM and CKD and HF had a 56% higher risk of ACM and a 44% higher risk of CV mortality compared 183 

with patients diagnosed with HF only [23]. Whereas previous work has reported a significant 184 

interaction between general CKD and HF risk [24], little is known about this interaction in the setting 185 

of multiple CaReMe comorbidities. In the current analysis, patients with T2DM and CKD were at 186 

higher risk for the development of HF, regardless of background HTN and HPLD. Furthermore, the 187 

relationship between CKD and higher HF risk increased with advanced CKD stage. This “cardiorenal” 188 

interaction is therefore important epidemiologically, and also appears to be important 189 

therapeutically because several therapies preferentially benefit both HF and CKD outcomes in 190 
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patients with diabetes, including RAAS inhibitors and SGLT2 inhibitors, as reflected by changes in 191 

recent clinical practice guidelines [25]. 192 

 193 

From a therapeutic perspective, preventing the development and progression of CKD in patients 194 

with T2DM is an important goal of care that involves treating multiple risk factors in addition to 195 

hyperglycemia. CV outcomes trials with SGLT2 inhibitors, have, for example, shown reductions in 196 

both CV outcomes and CKD progression even in the absence of significant kidney disease at baseline, 197 

and independent of glucose lowering, while previous intensive glycemic-control studies have 198 

principally only demonstrated benefits on surrogates of microvascular risk such as new onset of 199 

microalbuminuria [26]. Similarly, there have been a number of trials of various agents targeting 200 

pathways common to both kidney disease and CVD, including mineralocorticoid antagonists, which 201 

may indicate a place for the use of these compounds to take advantage of mechanisms of action 202 

that mitigate risk for CVD and CKD, independent of blood pressure lowering or control of other CV 203 

risk factors [9, 27, 28]. Indeed, some of these emerging therapies are thought to reduce cardiorenal 204 

risk by suppressing inflammation or profibrotic pathways that have until now not been a major 205 

consideration or therapeutic target. 206 

 207 

Beyond considering CKD and HF in isolation, it is also important to account for additional CaReMe 208 

comorbidities that can impact CV risk and mortality. The approach used in the current  209 

analysis—examining interactions with multiple CaReMe comorbidities—is clinically relevant because 210 

CaReMe comorbidities are common in patients with T2DM, with 51% having three or more CaReMe 211 

comorbidities [7]. The confluence of comorbidities is important because patients with conditions 212 

such as CKD are at high risk of CV complications and ACM [29], an interaction that is partly 213 

independent of albuminuria and metabolic control[30]. In the current analysis, rather than the 214 

absolute number of CaReMe comorbidities leading to worse outcomes, the presence of CKD was a 215 

dominant determinant of CV risk. Although this does not mean that other risk factors should be 216 

ignored, it highlights the potential importance of reducing CKD progression in patients with T2DM 217 

[30]. Observations in previous datasets have reported a relationship between CKD and CV events, 218 

but have not been restricted to patients with T2DM; it has been generally hypothesized that T2DM is 219 

a risk factor for combined CV and renal risk, but this relationship has not been examined directly [31, 220 

32]. 221 

 222 

Despite the large sample size, this analysis has important limitations. First, beyond the impact of 223 

incident CKD, we recognize that decline in kidney function is also associated with incident HF risk. 224 
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Because of the nature of the dataset, we were unable to include changes in eGFR over time in the 225 

analysis, nor were we able to account for the impact of specific intercurrent CV events such as 226 

revascularization procedures, which are also strongly linked with adverse outcomes in CKD patients 227 

with diabetes [33]. Claims data depend on accurate coding and on patients visiting a physician 228 

(perhaps well after a condition is manifest) and misclassification of the nature and timing of 229 

diagnoses is possible. However, the CaReMe conditions are well recognized and may be less subject 230 

to misclassification. Deaths not associated with a claim, and under-reporting of deaths, could 231 

underestimate the mortality rate. Due to large amounts of missing data, several important 232 

confounding factors could not be included in the statistical analyses. Finally, because of limitations 233 

of the available data, we were also unable to distinguish between HF with reduced and with 234 

preserved ejection fraction. Nonetheless, a unique strength of the current analysis is that we 235 

assessed the incremental contributions of various CaReMe comorbidities, such as HTN, HPLD, and 236 

CKD, to the risk of modified MACE, HF, and ACM in an incident cohort of patients with T2DM 237 

stratified by the presence or absence of prior ASCVD and by age. 238 

 239 

In conclusion, in this large cohort study involving patients with T2DM, CKD was the key CaReMe 240 

comorbidity associated with increased risks of modified MACE, HF, and ACM. Beyond HTN and HPLD, 241 

there is a need to better diagnose, treat, and prevent renal complications in patients with T2DM, 242 

which may reduce morbid CV and renal complications. Furthermore, development of care models 243 

that emphasize comprehensive risk reduction in patients T2DM and CaReMe comorbidities 244 

(especially CKD) is needed.  245 
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Figure Legends 388 

Fig. 1. Patient disposition and classification as per ICD-9 codes (combined) 389 

The last row shows patients who were included in the analysis. Patients who do not fulfill any of 390 

these criteria are not shown; i.e., the numbers do not sum up to the previous row’s N. It is possible 391 

for individual patients to be included in all of the last 3 groups; i.e., the 3 groups are not mutually 392 

exclusive. 393 

Abbreviations: CKD, chronic kidney disease; CPRD, Clinical Practice Research Datalink; HPLD, 394 

hyperlipidemia; HTN, hypertension; ICD-9, International Classification of Diseases, Ninth Revision; 395 

T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. 396 

 397 

 398 

Fig. 2. Kaplan–Meier plots for the overall group of (A) time to modified MACE, (B) time to HF, (C) 399 

time to ACM  400 

Abbreviations: ACM, all-cause mortality; CKD, chronic kidney disease; DM, type 2 diabetes mellitus; 401 

HF, heart failure; HPLD, hyperlipidemia; HTN, hypertension; MACE, major adverse cardiovascular 402 

events. 403 

 404 


