531 research outputs found
Robust low loss splicing of hollow core photonic bandgap fiber to itself
Robust, low loss (0.16dB) splicing of hollow core photonic band gap fiber to itself is presented. Modal content is negligibly affected by splicing, enabling penalty-free 40Gbit/s data transmission over > 200m of spliced PBGF
TOBI sidescan sonar mapping of carbonate mound provinces and channel heads in the Porcupine Seabight, W. of Ireland
A large-scale sidescan sonar survey, using the 30 kHz TOBI system of the SOC, was carried out in summer 2002 over the carbonate mound provinces of the Porcupine Seabight and Rockall Trough, W of Ireland (EASSS III contract HPRI-CT-1999-00047, survey partly on behalf of the Porcupine Studies Group). The survey in the Porcupine Seabight focused on the Hovland-Magellan province in the north and the Belgica province on the eastern flank of the basin. Furthermore a reconnaissance track was added over the canyon heads of the Gollum Channel System further south in the Seabight.Each area has different characteristics. The Hovland-Magellan province shows a very homogeneous backscatter in the sidescan mosaics, indicating a quiet depositional environment. Mounds appear as sharp features with a strong backscatter and an acoustic shadow. Some Hovland mounds form multiple, ridge-like structures of more than a km in length. The Magellan mounds are nearly all buried, but leave subtle topographic effects at the seafloor.The Belgica mound province is characterised by much less homogeneous backscatter and a steeper seafloor slope. The mounds are placed en echelon along the slope and are bound to the W by a blind channel. Smaller down-slope channels are also found between the mounds. Many small, high-backscatter features, interpreted as incipient (’Moira’) mounds have been found in this province. Striations in the blind channel, and higher up on the slope of the Belgica province indicate the influence of high current speeds. Pockmarks have been found just south of the Belgica province. The Gollum Channels are steep-flanked, U- or V-shaped channels of ca. 200 m deep. Their steep walls are cut by gullies and feeder channels, and evidence of slope failures is present. Lineations and high-backscatter patches are found on some of the channel floors
Eutectic colony formation: A phase field study
Eutectic two-phase cells, also known as eutectic colonies, are commonly
observed during the solidification of ternary alloys when the composition is
close to a binary eutectic valley. In analogy with the solidification cells
formed in dilute binary alloys, colony formation is triggered by a
morphological instability of a macroscopically planar eutectic solidification
front due to the rejection by both solid phases of a ternary impurity that
diffuses in the liquid. Here we develop a phase-field model of a binary
eutectic with a dilute ternary impurity and we investigate by dynamical
simulations both the initial linear regime of this instability, and the
subsequent highly nonlinear evolution of the interface that leads to fully
developed two-phase cells with a spacing much larger than the lamellar spacing.
We find a good overall agreement with our recent linear stability analysis [M.
Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a
destabilization of the front by long-wavelength modes that may be stationary or
oscillatory. A fine comparison, however, reveals that the assumption commonly
attributed to Cahn that lamella grow perpendicular to the envelope of the
solidification front is weakly violated in the phase-field simulations. We show
that, even though weak, this violation has an important quantitative effect on
the stability properties of the eutectic front. We also investigate the
dynamics of fully developed colonies and find that the large-scale envelope of
the composite eutectic front does not converge to a steady state, but exhibits
cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion
Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity
The Origin of Galactic Cosmic Rays
Motivated by recent measurements of the major components of the cosmic
radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a
model in which there are two distinct kinds of cosmic ray accelerators in the
galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per
nucleon suggests that these two elements do not have the same spectrum of
magnetic rigidity over this entire region and that these two dominant elements
therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures,
uuencode
Interference in a Spherical Phase-Space and Asymptotic-Behavior of the Rotation Matrices
We extend the interference in the phase-space algorithm of Wheeler and Schleich [W. P. Schleich and J. A. Wheeler, Nature 326, 574 (1987)] to the case of a compact, spherical topology in order to discuss the large j limits of the angular momentum marginal probability distributions. These distributions are given in terms of the standard rotation matrices. It is shown that the asymptotic distributions are given very simply by areas of overlap in the classical spherical phase-space parametrized by the components of angular momentum. The results indicate the very general validity of the interference in phase-space concept for computing semiclassical limits in quantum mechanics
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Phase-Field Approach for Faceted Solidification
We extend the phase-field approach to model the solidification of faceted
materials. Our approach consists of using an approximate gamma-plot with
rounded cusps that can approach arbitrarily closely the true gamma-plot with
sharp cusps that correspond to faceted orientations. The phase-field equations
are solved in the thin-interface limit with local equilibrium at the
solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E53, R3017
(1996)]. The convergence of our approach is first demonstrated for equilibrium
shapes. The growth of faceted needle crystals in an undercooled melt is then
studied as a function of undercooling and the cusp amplitude delta for a
gamma-plot of the form 1+delta(|sin(theta)|+|cos(theta)|). The phase-field
results are consistent with the scaling law "Lambda inversely proportional to
the square root of V" observed experimentally, where Lambda is the facet length
and V is the growth rate. In addition, the variation of V and Lambda with delta
is found to be reasonably well predicted by an approximate sharp-interface
analytical theory that includes capillary effects and assumes circular and
parabolic forms for the front and trailing rough parts of the needle crystal,
respectively.Comment: 1O pages, 2 tables, 17 figure
Gauss-Bonnet Black Holes in dS Spaces
We study the thermodynamic properties associated with black hole horizon and
cosmological horizon for the Gauss-Bonnet solution in de Sitter space. When the
Gauss-Bonnet coefficient is positive, a locally stable small black hole appears
in the case of spacetime dimension , the stable small black hole
disappears and the Gauss-Bonnet black hole is always unstable quantum
mechanically when . On the other hand, the cosmological horizon is
found always locally stable independent of the spacetime dimension. But the
solution is not globally preferred, instead the pure de Sitter space is
globally preferred. When the Gauss-Bonnet coefficient is negative, there is a
constraint on the value of the coefficient, beyond which the gravity theory is
not well defined. As a result, there is not only an upper bound on the size of
black hole horizon radius at which the black hole horizon and cosmological
horizon coincide with each other, but also a lower bound depending on the
Gauss-Bonnet coefficient and spacetime dimension. Within the physical phase
space, the black hole horizon is always thermodynamically unstable and the
cosmological horizon is always stable, further, as the case of the positive
coefficient, the pure de Sitter space is still globally preferred. This result
is consistent with the argument that the pure de Sitter space corresponds to an
UV fixed point of dual field theory.Comment: Rextex, 17 pages including 8 eps figures, v2: minor changes, to
appear in PRD, v3: references adde
Student and tutor perceptions of effective tutoring in distance education
Questionnaire responses of 457 students and 602 tutors were used to investigate conceptions of a 'good tutor.' In each case, factor analysis identified scales that reflected key constructs; cluster analysis identified subgroups with different patterns of scale scores; and discriminant analysis determined the scales that contributed the most to differences among the clusters. Both sets of data yielded conceptions of tutoring that were described as task-oriented and student-oriented, respectively. The students' data yielded an additional, career-oriented conception. The tutors' data yielded two additional conceptions that were described as knowledge-oriented and impersonal, respectively. The distribution of the tutors' conceptions (but not that of the students' conceptions) varied across different faculties, suggesting that tutors from different disciplines have different beliefs about effective tutoring. The study suggests that both tutors and students would benefit from having a better appreciation of the importance of support in facilitating learnin
- …