1,072 research outputs found

    Quantum Tunneling Effect in Oscillating Friedmann Cosmology

    Get PDF
    It is shown that the tunneling effect in quantum cosmology is possible not only at the very beginning or the very end of the evolution, but also at the moment of maximum expansion of the universe. A positive curvature expanding Friedmann universe changes its state of evolution spontaneously and completely, {\it without} any changes in the matter content, avoiding recollapse, and falling into oscillations between the nonzero values of the scale factor. On the other hand, an oscillating nonsingular universe can tunnel spontaneously to a recollapsing regime. The probability of such kind of tunneling is given explicitly. It is inversely related to the amount of nonrelativistic matter (dust), and grows from a certain fixed value to unity if the negative cosmological constant approaches zero.Comment: 18 pages Latex + 2 figures available by fax upon reques

    Rectal Transmission of Transmitted/Founder HIV-1 Is Efficiently Prevented by Topical 1% Tenofovir in BLT Humanized Mice

    Get PDF
    Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (n = 43) were rectally inoculated with either the primary isolate HIV-1(JRCSF) or the MSM-derived transmitted/founder (T/F) virus HIV-1(THRO) within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1(JRCSF) and HIV-1(THRO), respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank p = 0.03) for HIV-1(JRCSF) and 0% (0/6; log rank p = 0.02) for HIV-1(THRO). This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    The narrative self, distributed memory, and evocative objects

    Get PDF
    In this article, I outline various ways in which artifacts are interwoven with autobiographical memory systems and conceptualize what this implies for the self. I first sketch the narrative approach to the self, arguing that who we are as persons is essentially our (unfolding) life story, which, in turn, determines our present beliefs and desires, but also directs our future goals and actions. I then argue that our autobiographical memory is partly anchored in our embodied interactions with an ecology of artifacts in our environment. Lifelogs, photos, videos, journals, diaries, souvenirs, jewelry, books, works of art, and many other meaningful objects trigger and sometimes constitute emotionally-laden autobiographical memories. Autobiographical memory is thus distributed across embodied agents and various environmental structures. To defend this claim, I draw on and integrate distributed cognition theory and empirical research in human-technology interaction. Based on this, I conclude that the self is neither defined by psychological states realized by the brain nor by biological states realized by the organism, but should be seen as a distributed and relational construct

    Three-Dimensional Phylogeny Explorer: Distinguishing paralogs, lateral transfer, and violation of "molecular clock" assumption with 3D visualization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Construction and interpretation of phylogenetic trees has been a major research topic for understanding the evolution of genes. Increases in sequence data and complexity are creating a need for more powerful and insightful tree visualization tools.</p> <p>Results</p> <p>We have developed 3D Phylogeny Explorer (3DPE), a novel phylogeny tree viewer that maps trees onto three spatial axes (species on the X-axis; paralogs on Z; evolutionary distance on Y), enabling one to distinguish at a glance evolutionary features such as speciation; gene duplication and paralog evolution; lateral gene transfer; and violation of the "molecular clock" assumption. Users can input any tree on the online 3DPE, then rotate, scroll, rescale, and explore it interactively as "live" 3D views. All objects in 3DPE are clickable to display subtrees, connectivity path highlighting, sequence alignments, and gene summary views, and etc. To illustrate the value of this visualization approach for microbial genomes, we also generated 3D phylogeny analyses for all clusters from the public COG database. We constructed tree views using well-established methods and graph algorithms. We used Scientific Python to generate VRML2 3D views viewable in any web browser.</p> <p>Conclusion</p> <p>3DPE provides a novel phylogenetic tree projection method into 3D space and its web-based implementation with live 3D features for reconstruction of phylogenetic trees of COG database.</p

    Effect of an audiovisual message for tetanus booster vaccination broadcast in the waiting room

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>General practitioners (GPs) often lack time and resources to invest in health education; audiovisual messages broadcast in the waiting room may be a useful educational tool. This work was designed to assess the effect of a message inviting patients to ask for a tetanus booster vaccination.</p> <p>Methods</p> <p>A quasi experimental study was conducted in a Belgian medical practice consisting of 6 GPs and 4 waiting rooms (total: 20,000 contacts/year). A tetanus booster vaccination audiovisual message was continuously broadcast for 6 months in 2 randomly selected waiting rooms (intervention group - 3 GPs) while the other 2 waiting rooms remained unequipped (control group - 3 GPs). At the end of the 6-month period, the number of vaccine adult-doses delivered by local pharmacies in response to GPs' prescriptions was recorded. As a reference, the same data were also collected retrospectively for the general practice during the same 6-month period of the previous year.</p> <p>Results</p> <p>During the 6-month reference period where no audiovisual message was broadcast in the 4 waiting rooms, the number of prescriptions presented for tetanus vaccines was respectively 52 (0.44%) in the intervention group and 33 (0.38%) in the control group (p = 0.50). By contrast, during the 6-month study period, the number of prescriptions differed between the two groups (p < 0.0001), rising significantly to 91 (0.79%) in the intervention group (p = 0.0005) while remaining constant in the control group (0.38% vs 0.39%; p = 0.90).</p> <p>Conclusions</p> <p>Broadcasting an audiovisual health education message in the GPs' waiting room was associated with a significant increase in the number of adult tetanus booster vaccination prescriptions delivered by local pharmacies.</p

    Production and perception of situationally variable alarm calls in wild tufted capuchin monkeys (Cebus apella nigritus)

    Get PDF
    Many mammalian and avian species produce conspicuous vocalizations upon encountering a predator, but vary their calling based on risk urgency and/or predator type. Calls falling into the latter category are termed “functionally referential” if they also elicit predator-appropriate reactions in listeners. Functionally referential alarm calling has been well documented in a number of Old World monkeys and lemurs, but evidence among Neotropical primates is limited. This study investigates the alarm call system of tufted capuchin monkeys (Cebus apella nigritus) by examining responses to predator and snake decoys encountered at various distances (reflecting differences in risk urgency). Observations in natural situations were conducted to determine if predator-associated calls were given in additional contexts. Results indicate the use of three call types. “Barks” are elicited exclusively by aerial threats, but the call most commonly given to terrestrial threats (the “hiccup”) is given in nonpredatory contexts. The rate in which this latter call is produced reflects risk urgency. Playbacks of these two call types indicate that each elicits appropriate antipredator behaviors. The third call type, the “peep,” seems to be specific to terrestrial threats, but it is unknown if the call elicits predator-specific responses. “Barks” are thus functionally referential aerial predator calls, while “hiccups” are better seen as generalized disturbance calls which reflect risk urgency. Further evidence is needed to draw conclusions regarding the “peep.” These results add to the evidence that functionally referential aerial predator alarm calls are ubiquitous in primates, but that noncatarrhine primates use generalized disturbance calls in response to terrestrial threats
    • 

    corecore