69 research outputs found

    ACCURACY OF GRID PRICING: AN EVALUATION USING WHOLESALE VALUES OF FED CATTLE

    Get PDF
    Grid pricing is one of the beef industry's answers to improving value coordination in fed cattle transactions. This paper constructs individual carcass-level grid and wholesale beef values. These values are used to evaluate the level of value communication that occurs between wholesale and grid values of beef. Furthermore, the values are used to estimate grid premiums/discounts that improve value communication. Results indicate that value coordination could be improved by modifying grid premiums/discounts.Marketing,

    Valuing Fed Cattle Using Slice Shear Force Measurements

    Get PDF
    Marketing fed cattle using grid pricing has become a popluar way to sell cattle. One of the most important beef characteristics, according to consumers, is beef tenderness. USDA quality grades are poor predictors of meat tenderness. However, mechanical shear force does objectively measure tenderness. This study illustrates how problematic USDA quality grades are at assessing accurate beef tenderness and proposes and evaluates a tenderness-based valuation system based on slice shear force technology. We show that cattle of all quality grades are substantially over- or under-valued when using a grid realtive to a tenderness-based valuation system.Marketing,

    Valuing Fed Cattle Using Objective Tenderness Measures

    Get PDF
    Beef tenderness is critical in consumer satisfaction with beef steak products. Current fed cattle valuation systems do not differentiate carcasses based upon tenderness variation. However, considerable research indicates consumers are willing to pay more for tender relative to tough beef steak. This article develops a tenderness-augmentation to current fed cattle grid pricing systems. Using a large set of actual carcasses, we determine that a tenderness-augmented price grid would reorder fed cattle value by on average nearly $5.00/cwt dressed relative to current valuation methods. Substantial opportunity is present to improve beef tenderness through new price signals to producers.beef quality, meat tenderness, cattle value, cattle price, Agribusiness, Farm Management, Food Consumption/Nutrition/Food Safety, Livestock Production/Industries, Q11, Q13, M31,

    Efficacy of Hypobromous Acid as a Hide-On Carcass Antimicrobial Intervention

    Get PDF
    Escherichia coli O157:H7 and Salmonella on cattle hides at slaughter are the main source of beef carcass contamination by these foodborne pathogens during processing. Hypobromous acid (HOBr) has been approved for various applications in meat processing, but the efficacy of HOBr as a hide antimicrobial has not been determined. In this study, the antimicrobial properties of HOBr were determined by spraying cattle hides at either of two concentrations, 220 or 500 ppm. Treatment of hides with 220 ppm of HOBr reduced the prevalence of E. coli O157:H7 on hides from 25.3 to 10.1% (P , 0.05) and reduced the prevalence of Salmonella from 28.3 to 7.1% (P \u3c 0.05). Treatment of hides with 500 ppm of HOBr reduced (P , 0.05) the prevalence of E. coli O157:H7 on hides from 21.2 to 10.1% and the prevalence of Salmonella from 33.3 to 8.1%. The application of 220 ppm of HOBr reduced (P \u3c 0.05) aerobic plate counts, total coliform counts, and E. coli counts on hides by 2.2 log CFU/100 cm2. The use of 500 ppm of HOBr resulted in reductions (P \u3c 0.05) of aerobic plate counts, total coliform counts, and E. coli counts by 3.3, 3.7, and 3.8 log CFU/100 cm2, respectively, demonstrating that the use of higher concentrations of HOBr on hides resulted in additional antimicrobial activity. These results indicate that the adoption of a HOBr hide wash will reduce hide concentrations of spoilage bacteria and pathogen prevalence, resulting in a lower risk of carcass contamination

    Efficacy of Hypobromous Acid as a Hide-On Carcass Antimicrobial Intervention

    Get PDF
    Escherichia coli O157:H7 and Salmonella on cattle hides at slaughter are the main source of beef carcass contamination by these foodborne pathogens during processing. Hypobromous acid (HOBr) has been approved for various applications in meat processing, but the efficacy of HOBr as a hide antimicrobial has not been determined. In this study, the antimicrobial properties of HOBr were determined by spraying cattle hides at either of two concentrations, 220 or 500 ppm. Treatment of hides with 220 ppm of HOBr reduced the prevalence of E. coli O157:H7 on hides from 25.3 to 10.1% (P , 0.05) and reduced the prevalence of Salmonella from 28.3 to 7.1% (P \u3c 0.05). Treatment of hides with 500 ppm of HOBr reduced (P , 0.05) the prevalence of E. coli O157:H7 on hides from 21.2 to 10.1% and the prevalence of Salmonella from 33.3 to 8.1%. The application of 220 ppm of HOBr reduced (P \u3c 0.05) aerobic plate counts, total coliform counts, and E. coli counts on hides by 2.2 log CFU/100 cm2. The use of 500 ppm of HOBr resulted in reductions (P \u3c 0.05) of aerobic plate counts, total coliform counts, and E. coli counts by 3.3, 3.7, and 3.8 log CFU/100 cm2, respectively, demonstrating that the use of higher concentrations of HOBr on hides resulted in additional antimicrobial activity. These results indicate that the adoption of a HOBr hide wash will reduce hide concentrations of spoilage bacteria and pathogen prevalence, resulting in a lower risk of carcass contamination

    Efficacy of Antimicrobial Interventions Used in Meat Processing Plants against Antimicrobial Tolerant Non–Antibiotic-Resistant and Antibiotic-Resistant Salmonella on Fresh Beef

    Get PDF
    Salmonella is a common cause of foodborne illness in the United States, and several strains of Salmonella have been identified as resistant to antibiotics. It is not known whether strains that are antibiotic resistant (ABR) and that have some tolerance to antimicrobial compounds are also able to resist the inactivation effects of antimicrobial interventions used in fresh meat processing. Sixty-eight Salmonella isolates (non-ABR and ABR strains) were treated with half concentrations of lactic acid (LA), peracetic acid (PAA), and cetylpyridinium chloride (CPC), which are used in beef processing plants to screen for tolerant strains. Six strains each from non-ABR and ABR Salmonella that were most tolerant of LA (2%), PAA (200 ppm), and CPC (0.4%) were selected. Selected strains were inoculated on surfaces of fresh beef and subjected to spray wash treatment with 4% LA, 400 ppm PAA, or 0.8% CPC for the challenge study. Tissue samples were collected before and after each antimicrobial treatment for enumeration of survivors. Spray treatment with LA, PAA, or CPC significantly reduced non-ABR Salmonella and ABR Salmonella on surfaces of fresh beef by 1.95, 1.22, and 1.33 log CFU/cm2, and 2.14, 1.45, and 1.43 log CFU/cm2, respectively. The order of effectiveness was LA . PAA = CPC. The findings also indicated that LA, PAA, and CPC were equally (P ≤ 0.05) effective against non-ABR and ABR Salmonella on surfaces of fresh beef. These data contribute to the body of work that indicates that foodborne pathogens that have acquired both antibiotic resistance and antimicrobial tolerance are still equally susceptible to meat processing antimicrobial intervention treatments

    A Farm-to-Fork Quantitative Microbial Exposure Assessment of β-Lactam-Resistant \u3ci\u3eEscherichia coli\u3c/i\u3e among U.S. Beef Consumers

    Get PDF
    Integrated quantitative descriptions of the transmission of β-lactam-resistant Escherichia coli (BR-EC) from commercial beef products to consumers are not available. Here, a quantitative microbial exposure assessment model was established to simulate the fate of BR-EC in a farm-to-fork continuum and provide an estimate of BR-EC exposure among beef consumers in the U.S. The model compared the per-serving exposures from the consumption of intact beef cuts, non-intact beef cuts, and ground beef. Additionally, scenario analysis was performed to evaluate the relative contribution of antibiotic use during beef cattle production to the level of human exposure to BR-EC. The model predicted mean numbers of BR-EC of 1.7 x 10-4, 8.7 x 10-4, and 6.9 x 10-1 CFU/serving for intact beef cuts, non-intact beef cuts, and ground beef, respectively, at the time of consumption. Sensitivity analyses using the baseline model suggested that factors related to sectors along the supply chain, i.e., feedlots, processing plants, retailers, and consumers, were all important for controlling human exposure to BR-EC. Interventions at the processing and post-processing stages are expected to be most effective. Simulation results showed that a decrease in antibiotic use among beef cattle might be associated with a reduction in exposure to BR-EC from beef consumption. However, the absolute reduction was moderate, indicating that the effectiveness of restricting antibiotic use as a standalone strategy for mitigating human exposure to BR-EC through beef consumption is still uncertain. Good cooking and hygiene practices at home and advanced safety management practices in the beef processing and post-processing continuum are more powerful approaches for reducing human exposure to antibiotic-resistant bacteria in beef products

    Twenty-Four-Month Longitudinal Study Suggests Little to No Horizontal Gene Transfer In Situ between Third-Generation Cephalosporin-Resistant \u3ci\u3eSalmonella\u3c/i\u3e and Third-Generation Cephalosporin-Resistant \u3ci\u3eEscherichia coli\u3c/i\u3e in a Beef Cattle Feedyard

    Get PDF
    Third-generation cephalosporins (3GCs) are preferred treatments for serious human Salmonella enterica infections. Beef cattle are suspected to contribute to human 3GC-resistant Salmonella infections. Commensal 3GC-resistant Escherichia coli are thought to act as reservoirs of 3GC resistance because these strains are isolated more frequently than are 3GC-resistant Salmonella strains at beef cattle feedyards. During each of 24 consecutive months, four samples of pen surface material were obtained from five pens (N = 480) at a Nebraska feedyard to determine to the contribution of 3GC-resistant E. coli to the occurrence of 3GC-resistant Salmonella. Illumina whole genome sequencing was performed, and susceptibility to 14 antimicrobial agents was determined for 121 3GC-susceptible Salmonella, 121 3GC-resistant Salmonella, and 203 3GCresistant E. coli isolates. 3GC-susceptible Salmonella isolates were predominantly from serotypes Muenchen (70.2%) and Montevideo clade 1 (23.1%). 3GC-resistant Salmonella isolates were predominantly from serotypes Montevideo clade 2 (84.3%). One bla gene type (blaCMY-2) and the IncC plasmid replicon were present in 100 and 97.5% of the 3GC-resistant Salmonella, respectively. Eleven bla gene types were detected in the 3GC-resistant E. coli, which were distributed across 42 multilocus sequence types. The blaCMY-2 gene and IncC plasmid replicon were present in 37.9 and 9.9% of the 3GC-resistant E. coli, respectively. These results suggest that 3GC resistance in Salmonella was primarily due the persistence of Salmonella Montevideo clade 2 with very minimal or no contribution from 3GC-resistant E. coli via horizontal gene transfer and that 3GCresistant E. coli may not be a useful indicator for 3GC-resistant Salmonella in beef cattle production environments

    Evaluating the Shelf Life and Sensory Properties of Beef Steaks from Cattle Raised on Different Grass Feeding Systems in the Western United States

    Get PDF
    Consumer interest in grass-fed beef has been steadily rising due to consumer perception of its potential benefits. This interest has led to a growing demand for niche market beef, particularly in the western United States. Therefore, the objective of this study was to assess the impact of feeding systems on the change in microbial counts, color, and lipid oxidation of steaks during retail display, and on their sensory attributes. The systems included: conventional grain-fed (CON), 20 months-grass-fed (20GF), 25-months-grass-fed (25GF) and 20-months-grass-fed + 45-day-grain-fed (45GR). The results indicate that steaks in the 20GF group displayed a darker lean and fat color, and a lower oxidation state than those in the 25GF group. However, the feeding system did not have an impact on pH or objective tenderness of beef steaks. In addition, consumers and trained panelist did not detect a difference in taste or flavor between the 20GF or 25GF steaks but expressed a preference for the CON and 45GR steaks, indicating that an increased grazing period may improve the color and oxidative stability of beef, while a short supplementation with grain may improve eating quality
    corecore