7,994 research outputs found
Use of high L.E.T. radiation to improve adhesion of metals to polytetrafluoroethylene
MgK alpha X-rays (1254 eV) and 2 keV electrons irradiate the surface of polytetrafluoro ethylene (PTFE). The damage is confined to a few tenths of a micron below the surface, and the doses exceed 10 to the eight power rad. X-ray Photoelectron Spectroscopy (XPS) of the irradiated surfaces and mass spectroscopy of the gaseous products of irradiation indicate that the damaged layer is crosslinked or branched PTFE. After either type of irradiation, the surface has enhanced affinity for metals and a lower contact angle with hexadecane. Tape pull tests show that evaporated Ni and Au films adhere better to the irradiated surface. XPS shows the Ni interacts chemically with PTFE forming NiF2 and possibly NiC. However, the gold adhesion and contact angle results indicate that the interaction is, at least in part, chemically nonspecific. Decreased contact angles on FEP Teflon crystallized against gold were attributed to either the presence of a polar oxygen layer or increased physical forces due to greater density. In the case of irradiated PTFE, no oxygen on the surface was observed. The crosslinked structure might, however, have a greater density, thus accounting for the observed increase in adhesion and wettability
Thermal desorption study of physical forces at the PTFE surface
Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage
Recommended from our members
Effect of elevated CO2 and high temperature on seed-set and grain quality of rice
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO2]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO2] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO2] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34–35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO2], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change
Nondifferentiable Dynamic: Two Examples
Some nondifferentiable quantities (for example, the metric signature) can be
the independent physical degrees of freedom. It is supposed that in quantum
gravity these degrees of freedom can fluctuate. Two examples of such quantum
fluctuation are considered: a quantum interchange of the sign of two components
of the 5D metric and a quantum fluctuation between Euclidean and Lorentzian
metrics. The first case leads to a spin-like structure on the throat of
composite wormhole and to a possible inner structure of the string. The second
case leads to a quantum birth of the non-singular Euclidean Universe with
frozen dimension. The probability for such quantum fluctuations is
connected with an algorithmical complexity of the Einstein equations.Comment: essential changes: the initial equations in section III are changed,
as the consequence the obtained solution describes the quantum birth of the
nonsingular Universe with the matter (electromagnetic field=nondiagonal
components of the MD metric
Computational Non-Destructive Evaluation Improving Ultrasonic Interrogation of Complex Geometry Composite Parts
Finite element simulation was employed in modeling the ultrasound (UT) pressure pulse propagation through a coupled liquid-composite medium to reproduce experimental data. From the simulation point of view, the proposed approach is challenging when there is a large simulation domain. For example, it is shown that a sub-micron wavelength of an ultrasonic wave requires a mesh size of several microns and this in turn requires significant computational resources, as well as special care in modeling. Some of the simulation results are presented considering that such modeling should reproduce experimental data for a healthy and faulty composite structure with complex geometry. Many possible experimental setups are simulated to demonstrate the non-destructive testing technique. This setup includes the generation of pressure pulse propagating through the tested composite plate and possible scattering by discontinuities (area of different impedance) that may be present in the panel. This scattered pulse together with the baseline pressure pulse generates a signature on the probe element which can be used to locate the position of defects in the structures
On factorizing -matrices in and spin chains
We consider quantum spin chains arising from -fold tensor products of the
fundamental evaluation representations of and .
Using the partial -matrix formalism from the seminal work of Maillet and
Sanchez de Santos, we derive a completely factorized expression for the
-matrix of such models and prove its equivalence to the expression obtained
by Albert, Boos, Flume and Ruhlig. A new relation between the -matrices and
the Bethe eigenvectors of these spin chains is given.Comment: 30 page
A vacuum (10(exp -9) Torr) friction apparatus for determining friction and endurance life of MoSx films
The first part of this paper describes an ultrahigh vacuum friction apparatus (tribometer). The tribometer can be used in a ball-on-disk configuration and is specifically designed to measure the friction and endurance life of solid lubricating films such as MoS(x) in vacuum at a pressure of 10 exp -7 Pa. The sliding mode is typically unidirectional at a constant rotating speed. The second part of this paper presents some representative friction and endurance life data for magnetron sputtered MoS(x) films (110 nm thick) deposited on sputter-cleaned 440 C stainless-steel disk substrates, which were slid against a 6-mm-diameter 440 C stainless-steel bearing ball. All experiments were conducted with loads of 0.49 to 3.6 N (average Hertzian contact pressure, 0.33 to 0.69 GPa), at a constant rotating speed of 120 rpm (sliding velocity ranging from 31 to 107 mm/s due to the range of wear track radii involved in the experiments), in a vacuum of 7 x 10 exp -7 Pa and at room temperature. The results indicate that there are similarities in friction behavior of MoS(x) films overs their life cycles regardless of load applied. The coefficient of friction (mu) decreases as load W increases according to mu = kW exp -1/3. The endurance life E of MoS(x) films decreases as the load W increases according to E = KW exp -1.4 for the load range. The load- (or contract-pressure-) dependent endurance life allows us to reduce the time for wear experiments and to accelerate endurance life testing of MoS(x) films. For the magnetron-sputtered MoS(x) films deposited on 440 C stainless-steel disks: the specific wear rate normalized to the load and the number of revolutions was 3 x 10 exp -8 mm exp 3/N-revolution; the specific wear rate normalized to the load and the total sliding distance was 8 x 10 exp -7 mm exp 3/N-m; and the nondimensional wear coefficient of was approximately 5 x 10 exp -6. The values are almost independent of load in the range 0.49 to 3.6 N (average Hertzian contact pressures of 0.33 to 0.69 GPa)
Quantum Geometrodynamics I: Quantum-Driven Many-Fingered Time
The classical theory of gravity predicts its own demise -- singularities. We
therefore attempt to quantize gravitation, and present here a new approach to
the quantization of gravity wherein the concept of time is derived by imposing
the constraints as expectation-value equations over the true dynamical degrees
of freedom of the gravitational field -- a representation of the underlying
anisotropy of space. This self-consistent approach leads to qualitatively
different predictions than the Dirac and the ADM quantizations, and in
addition, our theory avoids the interpretational conundrums associated with the
problem of time in quantum gravity. We briefly describe the structure of our
functional equations, and apply our quantization technique to two examples so
as to illustrate the basic ideas of our approach.Comment: 11, (No Figures), (Typeset using RevTeX
Quantum erasure within the Optical Stern-Gerlach Model
In the optical Stern-Gerlach effect the two branches in which the incoming
atomic packet splits up can display interference pattern outside the cavity
when a field measurement is made which erases the which-way information on the
quantum paths the system can follow. On the contrary, the mere possibility to
acquire this information causes a decoherence effect which cancels out the
interference pattern. A phase space analysis is also carried out to investigate
on the negativity of the Wigner function and on the connection between its
covariance matrix and the distinguishability of the quantum paths.Comment: 7 pages, 3 figure
- …