495 research outputs found

    A priori error estimates for the numerical solution of a coupled geomechanics and reservoir flow model with stress-dependent permeability

    Get PDF
    In this paper we consider the numerical solution of a coupled geomechanics and a stress-sensitive porous media reservoir flow model.We combine mixed finite elements for Darcy flow and Galerkin finite elements for elasticity. This work focuses on deriving convergence results for the numerical solution of this nonlinear partial differential system. We establish convergence with respect to the L2-norm for the pressure and for the average fluid velocity and with respect to the H1-norm for the deformation. Estimates respect to the L2-norm for mean stress, which is of special importance since it is used in the computation of permeability for poroelasticity, can be derived using the estimates in the H1-norm for the deformation. We start by deriving error estimates in a continuous-in-time setting. A cut-off operator is introduced in the numerical scheme in order to derive convergence. The spatial grids for the discrete approximations of the pressure and deformation do not need be the same. Theoretical convergence error estimates in a discrete-in-time setting are also derived in the scope of this investigation. A numerical example supports the convergence results

    Postprocessing of Non-Conservative Flux for Compatibility with Transport in Heterogeneous Media

    Full text link
    A conservative flux postprocessing algorithm is presented for both steady-state and dynamic flow models. The postprocessed flux is shown to have the same convergence order as the original flux. An arbitrary flux approximation is projected into a conservative subspace by adding a piecewise constant correction that is minimized in a weighted L2L^2 norm. The application of a weighted norm appears to yield better results for heterogeneous media than the standard L2L^2 norm which has been considered in earlier works. We also study the effect of different flux calculations on the domain boundary. In particular we consider the continuous Galerkin finite element method for solving Darcy flow and couple it with a discontinuous Galerkin finite element method for an advective transport problem.Comment: 34 pages, 17 figures, 11 table

    Nonlinear nonlocal multicontinua upscaling framework and its applications

    Full text link
    In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for problems without scale separation and high contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such as averages of the solution on each continuum. This paper extends the linear concepts to nonlinear problems, where the local problems are nonlinear. The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches. In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages (constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow problems, which are challenging because of convection-dominated nature of the concentration equation
    • …
    corecore