16 research outputs found

    Bivariate and Multivariate NeuroXidence: A Robust and Reliable Method to Detect Modulations of Spike–Spike Synchronization Across Experimental Conditions

    Get PDF
    Synchronous neuronal firing has been proposed as a potential neuronal code. To determine whether synchronous firing is really involved in different forms of information processing, one needs to directly compare the amount of synchronous firing due to various factors, such as different experimental or behavioral conditions. In order to address this issue, we present an extended version of the previously published method, NeuroXidence. The improved method incorporates bi- and multivariate testing to determine whether different factors result in synchronous firing occurring above the chance level. We demonstrate through the use of simulated data sets that bi- and multivariate NeuroXidence reliably and robustly detects joint-spike-events across different factors

    NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events

    Get PDF
    We present a non-parametric and computationally efficient method named NeuroXidence that detects coordinated firing of two or more neurons and tests whether the observed level of coordinated firing is significantly different from that expected by chance. The method considers the full auto-structure of the data, including the changes in the rate responses and the history dependencies in the spiking activity. Also, the method accounts for trial-by-trial variability in the dataset, such as the variability of the rate responses and their latencies. NeuroXidence can be applied to short data windows lasting only tens of milliseconds, which enables the tracking of transient neuronal states correlated to information processing. We demonstrate, on both simulated data and single-unit activity recorded in cat visual cortex, that NeuroXidence discriminates reliably between significant and spurious events that occur by chance

    An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo

    Get PDF
    Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal-hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in . We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.Peer reviewe

    Cellular anatomy of the mouse primary motor cortex.

    Get PDF
    An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture

    Single-Unit Recordings Revisited: Activity in Recurrent

    No full text
    We investigated the relevance of single-unit recordings in the context of dynamical neural systems with recurrent synapses. The present study focuses on modeling a relatively small, biologically-plausible network of neurons. In the absence of any input, the network activity is self-sustained due to the resonating properties of the neurons. Recording of single units reveals an increasingly complex response to stimulation as one proceeds higher into the processing stream hierarchy. Results suggest that classical analysis methods, using rate and averaging over time, fail to describe the dynamics of the system, and instead hide the relevant information embedded in the complex states of the network. We conclude that single-unit recordings, which are still extensively used in experimental neuroscience, need to be more carefully interpreted. 1
    corecore