183 research outputs found

    Modelling Braided River Morphodynamics Using a Particle Travel Length Framework

    Get PDF
    Numerical models that predict channel evolution are an essential tool for investigating processes that occur over timescales which render field observation intractable. The current generation of morphodynamic models, however, either oversimplify the relevant physical processes or, in the case of more physically complete codes based on computational fluid dynamics (CFD), have computational overheads that severely restrict the space–time scope of their application. Here we present a new, open-source, hybrid approach that seeks to reconcile these modelling philosophies. This framework combines steady-state, two-dimensional CFD hydraulics with a rule-based sediment transport algorithm to predict particle mobility and transport paths which are used to route sediment and evolve the bed topography. Data from two contrasting natural braided rivers (Rees, New Zealand, and Feshie, United Kingdom) were used for model verification, incorporating reach-scale quantitative morphological change budgets and volumetric assessment of different braiding mechanisms. The model was able to simulate 8 of the 10 empirically observed braiding mechanisms from the parameterized bed erosion, sediment transport, and deposition. Representation of bank erosion and bar edge trimming necessitated the inclusion of a lateral channel migration algorithm. Comparisons between simulations based on steady effective discharge versus event hydrographs discretized into a series of model runs were found to only marginally increase the predicted volumetric change, with greater deposition offsetting erosion. A decadal-scale simulation indicates that accurate prediction of event-scale scour depth and subsequent deposition present a methodological challenge because the predicted pattern of deposition may never “catch up” to erosion if a simple path-length distribution is employed, thus resulting in channel over-scouring. It may thus be necessary to augment path-length distributions to preferentially deposit material in certain geomorphic units. We anticipate that the model presented here will be used as a modular framework to explore the effect of different process representations, and as a learning tool designed to reveal the relative importance of geomorphic transport processes in rivers at multiple timescales

    Multi-scale environmental filters and niche partitioning govern the distributions of riparian vegetation guilds

    Get PDF
    Across landscapes, riparian plant communities assemble under varying levels of disturbance, environmental stress, and resource availability, leading to the development of distinct riparian life-history guilds over evolutionary timescales. Identifying the environmental filters that exert selective pressures on specific riparian vegetation guilds is a critical step in setting baseline expectations for how riparian vegetation may respond to environmental conditions anticipated under future global change scenarios. In this study, we ask: (1) What riparian plant guilds exist across the interior Columbia and upper Missouri River basins? (2) What environmental filters shape riparian guild distributions? (3) How does resource partitioning among guilds influence guild distributions and co-occurrence? Woody species composition was measured at 703 stream reaches and each species\u27 morphological and functional attributes were extracted from a database in four categories: (1) life form, (2) persistence and growth, (3) reproduction, and (4) resource use. We clustered species into guilds by morphological characteristics and attributes related to environmental tolerances, modeling these guilds\u27 distributions as a function of environmental filters-regional climate, watershed hydrogeomorphic characteristics, and stream channel form- and guild coexistence. We identified five guilds: (1) a tall, deeply rooted, long-lived, evergreen tree guild, (2) a xeric, disturbance tolerant shrub guild, (3) a hydrophytic, thicket-forming shrub guild, (4) a low-statured, shadetolerant, understory shrub guild, and (5) a flood tolerant, mesoriparian shrub guild. Guilds were most strongly discriminated by species\u27 rooting depth, canopy height and potential to resprout and grow following biomass-removing disturbance (e.g., flooding, fire). Hydro-climatic variables, including precipitation, watershed area, water table depth, and channel form attributes reflective of hydrologic regime, were predictors of guilds whose life history strategies had affinity or aversion to flooding, drought, and fluvial disturbance. Biotic interactions excluded guilds with divergent life history strategies and/or allowed for the co-occurrence of guilds that partition resources differently in the same environment. We conclude that the riparian guild framework provides insight into how disturbance and bioclimatic gradients shape riparian functional plant diversity across heterogeneous landscapes. Multiple environmental filters should be considered when the riparian response guild framework is to be used as a decisionsupport tool framework across large spatial extents. Copyright: © 2015 Hough-Snee et al

    Estimating Increased Transient Water Storage With Increases in Beaver Dam Activity

    Get PDF
    Dam building by beaver (Castor spp.) slows water movement through montane valleys, increasing transient water storage and the diversity of residence times. In some cases, water storage created by beaver dam construction is correlated to changes in streamflow magnitude and timing. However, the total amount of additional surface and groundwater storage that beaver dams may create (and, thus, their maximum potential impact on streamflow) has not been contextualized in the water balance of larger river basins. We estimate the potential transient water storage increases that could be created at 5, 25, 50, and 100% of maximum modeled beaver dam capacity in the Bear River basin, USA, by adapting the height above nearest drainage (HAND) algorithm to spatially estimate surface water storage. Surface water storage estimates were combined with the MODFLOW groundwater model to estimate potential increases in groundwater storage throughout the basin. We tested four scenarios to estimate potential transient water storage increases resulting from the construction of 1179 to 34,897 beaver dams, and estimated surface water storage to range from 57.5 to 72.8 m3 per dam and groundwater storage to range from 182.2 to 313.3 m3 per dam. Overall, we estimate that beaver dam construction could increase transient water storage by up to 10.38 million m3 in the Bear River basin. We further contextualize beaver dam-related water storage increases with streamflow, reservoir, and snowpack volumes

    Triamidoamine-supported zirconium: Hydrogen activation, Lewis acidity, and: Rac -lactide polymerization

    Get PDF
    Investigation of a triamidoamine-supported zirconium hydride intermediate, important to a range of catalytic reactions, revealed the potential Lewis acidity of [κ5-N,N,N,N,C-(Me3SiNCH2CH2)2NCH2CH2NSiMe2CH2]Zr (1). A preliminary study of 1 as a precursor for the polymerization of rac-lactide showed modest activity but indicated that five-coordinate zirconium complexes with tetra-N donor ligands may be an avenue for further development in group 4 metal lactide polymerization catalysis

    Low-Tech Riparian and Wet Meadow Restoration Increases Vegetation Productivity and Resilience Across Semiarid Rangelands

    Get PDF
    Restoration of riparian and wet meadow ecosystems in semiarid rangelands of the western United States is a high priority given their ecological and hydrological importance in the region. However, traditional restoration approaches are often intensive and costly, limiting the extent over which they can be applied. Practitioners are increasingly trying new restoration techniques that are more cost‐effective, less intensive, and can more practically scale up to the scope of degradation. Unfortunately, practitioners typically lack resources to undertake outcome‐based evaluations necessary to judge the efficacy of these techniques. In this study, we use freely available, satellite remote sensing to explore changes in vegetation productivity (normalized difference vegetation index) of three distinct, low‐tech, riparian and wet meadow restoration projects. Case studies are presented that range in geographic location (Colorado, Oregon, and Nevada), restoration practice (Zeedyk structures, beaver dam analogs, and grazing management), and time since implementation. Restoration practices resulted in increased vegetation productivity of up to 25% and increased annual persistence of productive vegetation. Improvements in productivity with time since restoration suggest that elevated resilience may further enhance wildlife habitat and increase forage production. Long‐term, documented outcomes of conservation are rare; we hope our findings empower practitioners to further monitor and explore the use of low‐tech methods for restoration of ecohydrologic processes at meaningful spatial scales

    Modelling Eurasian Beaver Foraging Habitat and Dam Suitability, for Predicting the Location and Number of Dams Throughout Catchments in Great Britain

    Get PDF
    Eurasian beaver (Castor fiber) populations are expanding across Europe. Depending on location, beaver dams bring multiple benefits and/or require management. Using nationally available data, we developed: a Beaver Forage Index (BFI), identifying beaver foraging habitat, and a Beaver Dam Capacity (BDC) model, classifying suitability of river reaches for dam construction, to estimate location and number of dams at catchment scales. Models were executed across three catchments, in Great Britain (GB), containing beaver. An area of 6747 km2 was analysed for BFI and 16,739 km of stream for BDC. Field surveys identified 258 km of channel containing beaver activity and 89 dams, providing data to test predictions. Models were evaluated using a categorical binomial Bayesian framework to calculate probability of foraging and dam construction. BFI and BDC models successfully categorised the use of reaches for foraging and damming, with higher scoring reaches being preferred. Highest scoring categories were ca. 31 and 79 times more likely to be used than the lowest for foraging and damming respectively. Zero-inflated negative binomial regression showed that modelled dam capacity was significantly related (p = 0.01) to observed damming and was used to predict numbers of dams that may occur. Estimated densities of dams, averaged across each catchment, ranged from 0.4 to 1.6 dams/km, though local densities may be up to 30 dams/km. These models provide fundamental information describing the distribution of beaver foraging habitat, where dams may be constructed and how many may occur. This supports the development of policy and management concerning the reintroduction and recolonisation of beaver

    Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare

    Get PDF
    Background: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal’s ability to cope with cold challenges. Methods: Eighteen pregnant ewes with a BCS of 2.760.1 were fed to attain low (LBC: BCS2.360.1), medium (MBC: BCS3.260.2) or high BCS (HBC: BCS3.660.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.460.1uC) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. Results: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P,0.01, P,0.01 and P,0.05, respectively) and HBC ewes (P,0.05, P,0.01 and P,0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P,0.05) and HBC ewes (P,0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P,0.05 and P,0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P,0.01). Glucose concentrations and internal body temperature (Tcore) increased in all treatments, although peak Tcore tended to be higher in HBC ewes (P,0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P,0.05). Conclusion: Even though all ewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link

    Uncertainty in morphological sediment budgeting of rivers

    No full text
    Repeat topographic surveys are often used to monitor geomorphological change in rivers. Such surveys can yield Digital elevation models (OEMs), which are differenced against each other to produce spatially distributed maps of elevation changes called OEMs of difference (000). Both areal and volumetric budgets of erosion and deposition can be calculated from DoOs. However, questions arise about the reliability of the analyses and what they mean. This thesis presents two new methodological advances to address these two uncertainties. The question of reliabilities (reliability uncertainty) was addressed through the development of a flexible technique for estimating the spatially variable surface representation uncertainties in individual OEMs. A fuzzy inference system is used to quantify uncertainty in OEMs and .' the individual error estimates are propagated into the 000 on a cell-by-cell basis. This is converted into a probabilistic estimate of 000 uncertainty. This estimate can be improved using Bayes theorem and an analysis of the spatial coherence of erosion and deposition units within the 000. The resulting probabilistic estimate of 000 uncertainty reflects the spatial variability of uncertainty, and can be used to threshold the 000 at user-specified confidence intervals. This addresses reliability by allowing the distinction between real and undetectable changes. The question of what the thresholded DoDs mean, geomorphically, is a fundamental one and what originally motivated the development of morphological sediment budgeting techniques. Herein, a range of masking tools were developed, which allow the quantitative interrogation of these rich spatial datasets and their patterns based on various classification systems and/or the expert-judgment of a trained geomorphologist. The tools extend the traditional 000 interpretation of whether a reach is jet aggradational or net degradational to a detailed quantitative segregation of the 000 budget into the mechanisms responsible for the changes at the bar-scale. The utility of both these methodological developments were tested on three different data sets representing event-based monitoring (Sulphur Creek, California), restoration monitoring (Mokelumne River, California), and annual-monitoring of a natural dynamic system (River Feshie, Scotland). One of the themes that emerges across the application of these tools in the three different settings is the sharp contrast between which geomorphological mechanisms . of change are dominant in areal versus volumetric terms. The tools extend what can reliably be inferred about geomorphological change from repeat topographic surveys.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore