309 research outputs found

    Nonintrusive electron number density measurements in the plume of a 1 kW arcjet using a modern microwave interferometer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77090/1/AIAA-1994-3297-662.pd

    Alpha-synuclein mRNA expression in oligodendrocytes in MSA

    Get PDF
    Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting clinically with parkinsonian, cerebellar, and autonomic features. α‐Synuclein (αsyn), encoded by the gene SNCA, is the main constituent of glial cytoplasmic inclusion (GCI) found in oligodendrocytes in MSA, but the methods of its accumulation have not been established. The aim of this study is to investigate alterations in regional and cellular SNCA mRNA expression in MSA as a possible substrate for GCI formation. Quantitative reverse transcription polymerase chain reaction (qPCR) was performed on postmortem brain samples from 15 MSA, 5 IPD, and 5 control cases to investigate regional expression in the frontal and occipital regions, dorsal putamen, pontine base, and cerebellum. For cellular expression analysis, neurons and oligodendrocytes were isolated by laser‐capture microdissection from five MSA and five control cases. SNCA mRNA expression was not significantly different between the MSA, IPD and control cases in all regions (multilevel model, P = 0.14). After adjusting for group effect, the highest expression was found in the occipital cortex while the lowest was in the putamen (multilevel model, P < 0.0001). At the cellular level, MSA oligodendrocytes expressed more SNCA than control oligodendrocytes and expression in MSA neurons was slightly lower than that in controls, however, these results did not reach statistical significance. We have demonstrated regional variations in SNCA expression, which is higher in cortical than subcortical regions. This study is the first to demonstrate SNCA mRNA expression by oligodendrocytes in human postmortem tissue using qPCR and, although not statistically significant, could suggest that this may be increased in MSA compared to controls. GLIA 2014;62:964–97

    Plasma Metabolomics Implicate Modified Transfer RNAs and Altered Bioenergetics in the Outcome of Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: -Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. METHODS: -We conducted a comprehensive study of plasma metabolites using ultra-performance liquid chromatography mass-spectrometry to (1) identify patients at high risk of early death, (2) identify patients who respond well to treatment and (3) provide novel molecular insights into disease pathogenesis. RESULTS: -53 circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy controls (n=121) following correction for multiple testing (p<7.3e-5) and confounding factors, including drug therapy, renal and hepatic impairment. A subset of 20/53 metabolites also discriminated PAH patients from disease controls (symptomatic patients without pulmonary hypertension, n=139). 62 metabolites were prognostic in PAH, with 36/62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), TCA cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan and polyamine metabolites and decreased levels of steroids, sphingomyelins and phosphatidylcholines distinguished patients from controls. The largest differences correlated with increased risk of death and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to healthy controls. CONCLUSIONS: -Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterisation of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterize these patients

    Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: A United Kingdom cohort study analysis

    Get PDF
    While traffic and air pollution exposure is associated with increased mortality in numerous diseases, its association with disease severity and outcomes in pulmonary arterial hypertension (PAH) remains unknown.Exposure to particulate matter ≀2.5 Όm3 (PM2.5), nitrogen dioxide (NO2) and indirect measures of traffic-related air pollution (distance to main road and length of roads within buffer zones surrounding residential addresses) were estimated for 301 patients with idiopathic/heritable PAH recruited in the UK PAH national Cohort study. Associations with transplant-free survival and pulmonary hemodynamic severity at baseline were assessed, adjusting for confounding variables defined a priori.Higher estimated exposure to PM2.5 was associated with higher risk of death or lung transplant (Unadjusted hazard ratio (HR) 2.68; 95% CI 1.11-6.47 per 3 Όg·m-3, p=0.028). This association remained similar when adjusted for potential confounding variables (HR 4.38; 95% CI 1.44-13.36 per 3 Όg·m-3, p=0.009). No associations were found between NO2 exposure or other traffic pollution indicators and transplant-free survival Conversely, indirect measures of exposure to traffic-related air pollution within the 500-1000 m buffer zones correlated with the ERS/ESC risk categories as well as pulmonary hemodynamics at baseline. This association was strongest for pulmonary vascular resistance.In idiopathic/heritable PAH, indirect measures of exposure to traffic-related air pollution were associated with disease severity at baseline, whereas higher PM2.5 exposure may independently predict shorter transplant-free survival

    THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87

    SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87

    Get PDF
    Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT
    • 

    corecore