34 research outputs found

    Optimizing pesticide spray coverage using a novel web and smartphone tool, SnapCard

    Full text link
    International audienceThe overuse of pesticides leads to contamination of water and food. Therefore, there is a need for tools and strategies to optimize pesticide application. Here we present SnapCard, a user-friendly and freely available decision support tool for farmers and agricultural consultants, available at snapcard.agric.wa.gov.au. SnapCard allows to predict, measure, and archive pesticide spray coverage quantified from water-sensitive spray cards. Variables include spray settings such as nozzle orifice size, sprayer speed, water carrier rate and adjuvant, and weather variables such as barometric pressure, relative humidity, temperature, and wind speed at ground level. We use separate regression models for four nozzles types. Our results showed that there are strong and positive correlations between water carrier rate and spray coverage for all four nozzle types. Moreover, sprayer speed is highly negatively correlated with obtained spray coverage. In addition, there is no consistent effect of either nozzle type or use of a particular adjuvant, across water carrier intervals. We conclude that varying combinations of spray settings and weather conditions caused marked ranges of spray coverages among the four nozzle types, thus highlighting the importance of selecting the right nozzle orifice size and type. We demonstrate that realistic scenarios of environmental conditions and spray settings can lead to predictions of very low spray coverage with at least one of the four nozzle types. We discuss how the novel and freely available smartphone app, SnapCard, can be used to optimize spray coverage, reduce spray drift, and minimize the risk of resistance development in target pest populations

    Behavioral Avoidance - Will Physiological Insecticide Resistance Level of Insect Strains Affect Their Oviposition and Movement Responses?

    No full text
    Agricultural organisms, such as insect herbivores, provide unique opportunities for studies of adaptive evolutionary processes, including effects of insecticides on movement and oviposition behavior. In this study, Brassica leaves were treated with one of two non-systemic insecticides and exposed to two individual strains (referred to as single or double resistance) of diamondback moth (Plutella xylostella) (DBM) exhibiting physiological resistance. Behavioral responses by these two strains were compared as part of characterizing the relative effect of levels of physiological resistance on the likelihood of insects showing signs of behavioral avoidance. For each DBM strain, we used choice bioassays to quantify two possible types of behavioral avoidance: 1) females ovipositing predominantly on leaf surfaces without insecticides, and 2) larvae avoiding insecticide-treated leaf surfaces. In three-choice bioassays (leaves with no pesticide, 50% coverage with pesticide, or 100% coverage with pesticide), females from the single resistance DBM strain laid significantly more eggs on water treated leaves compared to leaves with 100% insecticide coverage (both gamma-cyhalothrin and spinetoram). Females from the double resistance DBM strain also laid significantly more eggs on water treated leaves compared to leaves with 100% gamma-cyhalothrin, while moths did not adjust their oviposition behavior in response to spinetoram. Larvae from the single resistance DBM strain showed a significant increase in mobility in response to both insecticides and avoided insecticide-treated portions of leaves when given a choice. On the other hand, DBM larvae from the double resistance strain showed a significant decrease in mobility in response to insecticides, and they did not avoid insecticide-treated portions of leaves when given a choice. Our results suggest that pest populations with physiological resistance may show behavioral avoidance, as resistant females avoided oviposition on leaves without gamma-cyhalothrin. Thus, physiological resistance and behavioral avoidance do not appear to be controlled by the same selection pressures, and the mechanisms responsible for behavioral avoidance may vary among life stages. Our analysis also suggested that a population with lesser physiological resistance to insecticides may be under a stronger selection pressure and therefore be more likely to develop avoidance behaviors than a population with higher levels of physiological resistance

    Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance

    No full text
    To study the potential for the emergence of resistance in Aedes aegypti populations, a wild colony was subjected to selective pressure with Cry11Aa, one of four endotoxins that compose the Bacillus thuringiensis serovar israelensis toxin. This bacterium is the base component of the most important biopesticide used in the control of mosquitoes worldwide. After 54 generations of selection, significant resistance levels were observed. At the beginning of the selection experiment, the half lethal concentration was 26.3 ng/mL and had risen to 345.6 ng/mL by generation 54. The highest rate of resistance, 13.1, was detected in the 54th generation. Because digestive proteases play a key role in the processing and activation of B. thuringiensis toxin, we analysed the involvement of insect gut proteases in resistance to the Cry11Aa B. thuringiensis serovar israelensis toxin. The protease activity from larval gut extracts from the Cry11Aa resistant population was lower than that of the B. thuringiensisserovar israelensis susceptible colony. We suggest that differences in protoxin proteolysis could contribute to the resistance of this Ae. aegypti colony
    corecore