841 research outputs found

    The Association Between the Long-Term Change in Directly Measured Cardiorespiratory Fitness and Mortality Risk

    Full text link
    Introduction: There is a strong inverse association between cardiorespiratory fitness (CRF) and mortality outcomes. This relationship has predominantly been assessed cross-sectionally, however low CRF is a modifiable risk factor, thus assessing this association using a single baseline measure may be sub-optimal. Purpose: To examine the association of the long-term change in CRF, measured using cardiopulmonary exercise testing (CPX) with all-cause and disease-specific mortality. Methods: Participants included 833 apparently healthy men and women (42.9±10.8 years) who underwent two maximal CPXs, the second CPX being ≄ 1 year following the baseline assessment. Participants were followed for 17.7 ± 11.8 years for allcause, cardiovascular disease (CVD), and cancer mortality. Cox-proportional hazard models were performed to determine the association between the change in CRF, computed as visit 1 (V1) peak oxygen consumption (VO2peak (ml·kg-1·min-1)) – visit 2 (V2) VO2peak, and mortality outcomes. Results: During follow-up, 172 participants died. Overall, the change in CPX-derived CRF was inversely related to all-cause, CVD, and cancer mortality (p\u3c0.05). Each 1 ml·kg-1·min-1 increase was associated with a 10.8, 14.7, and 15.9% reductions in allcause, CVD, and cancer mortality, respectively. The inverse relationship between CRF and all-cause mortality remained significant (p\u3c0.05) when men and women were examined independently, after adjusting for years since first CPX, baseline VO2peak, and age. Conclusion: Long-term changes in CRF were inversely related to mortality outcomes, and mortality was better predicted by CRF measured at subsequent examination than baseline CRF. These findings support the recent American Heart Association scientific statement advocating CRF as a clinical vital sign that should be assessed routinely in clinical practice, as well as support regular participation in physical activity to maintain adequate CRF levels across the lifespan

    Atomistic Theory of Coherent Spin Transfer between Molecularly Bridged Quantum Dots

    Full text link
    Time-resolved Faradary rotation experiments have demonstrated coherent transfer of electron spin between CdSe colloidal quantum dots coupled by conjugated molecules. We employ here a Green's function approach, using semi-empirical tight-binding to treat the nanocrystal Hamiltonian and Extended Huckel theory to treat the linking molecule Hamiltonian, to obtain the coherent transfer probabilities from atomistic calculations, without the introduction of any new parameters. Calculations on 1,4-dithiolbenzene and 1,4-dithiolcyclohexane linked nanocrystals agree qualitatively with experiment and provide support for a previous transfer Hamiltonian model. We find a striking dependence on the transfer probabilities as a function of nanocrystal surface site attachment and linking molecule conformation. Additionally, we predict quantum interference effects in the coherent transfer probabilities for 2,7-dithiolnaphthalene and 2,6-dithiolnaphthalene linking molecules. We suggest possible experiments based on these results that would test the coherent, through-molecule transfer mechanism.Comment: 12 pages, 9 figures. Submitted Phys. Rev.

    The Association between the Change in Directly Measured Cardiorespiratory Fitness across Time and Mortality Risk

    Full text link
    Background: The relationship between cardiorespiratory fitness (CRF) and mortality risk has typically been assessed using a single measurement, though some evidence suggests the change in CRF over time influences risk. This evidence is predominantly based on studies using estimated CRF (CRFe). The strength of this relationship using change in directly measured CRF over time in apparently healthy men and women is not well understood. Purpose: To examine the association of change in CRF over time, measured using cardiopulmonary exercise testing (CPX), with all-cause and disease-specific mortality and to compare baseline and subsequent CRF measurements as predictors of all-cause mortality. Methods: Participants included 833 apparently healthy men and women (42.9 ± 10.8 years) who underwent two maximal CPXs, the second CPX being ≄1 year following the baseline assessment (mean 8.6 years, range 1.0 to 40.3 years). Participants were followed for up to 17.7 (SD 11.8) years for all-cause-, cardiovascular disease- (CVD), and cancer mortality. Cox-proportional hazard models were performed to determine the association between the change in CRF, computed as visit 1 (CPX1) peak oxygen consumption (VO2peak [mL·kg−1·min−1]) – visit 2 (CPX2) VO2peak, and mortality outcomes. A Wald-Chi square test of equality was used to compare the strength of CPX1 to CPX2 VO2peak in predicting mortality. Results: During follow-up, 172 participants died. Overall, the change in CPX-CRF was inversely related to all-cause, CVD, and cancer mortality (p \u3c 0.05). Each 1 mL·kg−1·min−1 increase was associated with a ~11, 15, and 16% (all p \u3c 0.001) reduction in all-cause, CVD, and cancer mortality, respectively. The inverse relationship between CRF and all-cause mortality was significant (p \u3c 0.05) when men and women were examined independently, after adjusting for years since first CPX, baseline VO2peak, and age. Further, the Wald Chi-square test of equality found CPX2 VO2peak to be a significantly stronger predictor of all-cause mortality than CPX1 VO2peak (p \u3c 0.05). Conclusion: The change in CRF over time was inversely related to mortality outcomes, and mortality was better predicted by CRF measured at subsequent test than CPX1 CRF. These findings emphasize the importance of adopting lifestyle behaviors that promote CRF, as well as support the need for routine assessment of CRF in clinical practice to better assess risk

    Scalability of quantum computation with addressable optical lattices

    Get PDF
    We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum computation with neutral atoms in addressable (large lattice constant) optical lattices. We have identified possible limits to the size of quantum computations, arising in 3D optical lattices from current limitations on the ability to perform single qubit gates in parallel and in 2D lattices from constraints on laser power. Our results suggest that 3D arrays as large as 100 x 100 x 100 sites (i.e., ∌106\sim 10^6 qubits) may be achievable, provided two-qubit gates can be performed with sufficiently high precision and degree of parallelizability. Parallelizability of long range interaction-based two-qubit gates is qualitatively compared to that of collisional gates. Different methods of performing single qubit gates are compared, and a lower bound of 1×10−51 \times 10^{-5} is determined on the error rate for the error mechanisms affecting 133^{133}Cs in a blue-detuned lattice with Raman transition-based single qubit gates, given reasonable limits on experimental parameters.Comment: 17 pages, 5 figures. Accepted for publication in Physical Review

    LINVIEW: Incremental View Maintenance for Complex Analytical Queries

    Full text link
    Many analytics tasks and machine learning problems can be naturally expressed by iterative linear algebra programs. In this paper, we study the incremental view maintenance problem for such complex analytical queries. We develop a framework, called LINVIEW, for capturing deltas of linear algebra programs and understanding their computational cost. Linear algebra operations tend to cause an avalanche effect where even very local changes to the input matrices spread out and infect all of the intermediate results and the final view, causing incremental view maintenance to lose its performance benefit over re-evaluation. We develop techniques based on matrix factorizations to contain such epidemics of change. As a consequence, our techniques make incremental view maintenance of linear algebra practical and usually substantially cheaper than re-evaluation. We show, both analytically and experimentally, the usefulness of these techniques when applied to standard analytics tasks. Our evaluation demonstrates the efficiency of LINVIEW in generating parallel incremental programs that outperform re-evaluation techniques by more than an order of magnitude.Comment: 14 pages, SIGMO

    Cardiorespiratory Fitness and Mortality in Healthy Men and Women

    Full text link
    Background There is a well-established inverse relationship between cardiorespiratory fitness (CRF) and mortality. However, this relationship has almost exclusively been studied using estimated CRF. Objectives This study aimed to assess the association of directly measured CRF, obtained using cardiopulmonary exercise (CPX) testing with all-cause, cardiovascular disease (CVD), and cancer mortality in apparently healthy men and women. Methods Participants included 4,137 self-referred apparently healthy adults (2,326 men, 1,811 women; mean age: 42.8 ± 12.2 years) who underwent CPX testing to determine baseline CRF. Participants were followed for 24.2 ± 11.7 years (1.1 to 49.3 years) for mortality. Cox-proportional hazard models were performed to determine the relationship of CRF (ml·kg-1·min-1) and CRF level (low, moderate, and high) with mortality outcomes. Results During follow-up, 727 participants died (524 men, 203 women). CPX-derived CRF was inversely related to all-cause, CVD, and cancer mortality. Low CRF was associated with higher risk for all-cause (hazard ratio [HR]: 1.73; 95% confidence interval [CI]: 1.20 to 3.50), CVD (HR: 2.27; 95% CI: 1.20 to 3.49), and cancer (HR: 2.07; 95% CI: 1.18 to 3.36) mortality compared with high CRF. Further, each metabolic equivalent increment increase in CRF was associated with a 11.6%, 16.1%, and 14.0% reductions in all-cause, CVD, and cancer mortality, respectively. Conclusions Given the prognostic ability of CPX-derived CRF for all-cause and disease-specific mortality outcomes, its use should be highly considered for apparently healthy populations as it may help to improve the efficacy of the individualized patient risk assessment and guide clinical decisions

    Effects of harvest season on carcass characteristics of lambs in the Intermountain West

    Get PDF
    Objective: The objectives of this study were to survey characteristics including hot carcass weight (HCW), 12th rib fat thickness (RFT), body-wall thickness (BWT), longissimus muscle area (LMA), USDA yield grade (USDA YG), percentage closely trimmed retail cuts (RC), and calculated yield grade (Calc YG) of lamb carcasses in the Intermountain West to determine the effects of season of slaughter and interrelationships among carcass characteristics. Materials and Methods: Lamb carcass characteristics were evaluated in 2 commercial Intermountain West processing plants over one year (n = 10,027). Carcasses were evaluated by season: spring (December–April, n = 2,322) and summer (May–August, n = 7,705). Results and Discussion: Carcasses of lambs slaughtered in the spring had 3.4 kg heavier HCW (P = 0.04) than those slaughtered in the summer. Subcutaneous fat (RFT; P = 0.06) and Calc YG (P = 0.09) tended to be greater in the spring than summer. Correlation coefficients and models of fit with a linear covariate of HCW indicated negative relationship between HCW and RC and positive relationship with all other carcass traits (P \u3c 0.001). Overall, graded lamb carcasses exceeded commercial processing plant preferred HCW (38.6 kg) by 5% (mean = 40.5 kg) and industry acceptable RFT (6 mm) by 25% (mean = 8.03 mm). Furthermore, 70% of lamb carcasses exceed 6 mm RFT. Implications and Applications: Season of slaughter contributed to differences in HCW and USDA YG but no other carcass characteristics. Still, carcass data surveyed from the largest lamb-producing region of the United States suggests that the degree of fatness exceeds industry preferences. Although abattoirs mitigate adverse effects of excessive fat through trimming and diverse market outlets, industry-wide efforts that agree on acceptable standards of trimness are needed. Transparent dialog across industry segments should be prioritized in addition to consistent integration of value-based pricing to reduce the proportion of excessively finished lambs

    Whistler mode startup in the Michigan Mirror Machine

    Full text link
    Results of investigations of whistler mode ECRH plasma startup in the Michigan Mirror Machine are presented. Electron‐velocity‐distribution and plasma‐spatial‐distribution time evolution are characterized by measurements from axially and radially moveable Langmuir probes, an endloss current detector, an electron cyclotron emission radiometer, a foil‐filtered X‐ray detector, and a diamagnetic loop at the mirror midplane. Measurements of the buildup of both electron density and perpendicular pressure (nkT⟂) are compared to predictions from various numerical models. Both modeling and data suggest the creation of a highly anisotropic electron velocity distribution function with a ‘‘sloshing electron’’ axial density profile.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87352/2/204_1.pd

    Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays

    Full text link
    We present a derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that inclusion of local chemical potential and driving velocity fields as a gauge field allows derivation of the hydrodynamic equations of motion for the driven macroscopic phase differences across simple aperture arrays. For a single aperture, the current-phase equation for driven flow contains sinusoidal, linear, and current-bias contributions. We compute the renormalization group (RG) beta function of the periodic potential in the effective action for small tunneling amplitudes and use this to analyze the temperature dependence of the low-energy current-phase relation, with application to the transition from linear to sinusoidal current-phase behavior observed in experiments by Hoskinson et al. \cite{packard} for liquid 4^{4}He driven through nanoaperture arrays. Extension of the microscopic theory to a two-aperture array shows that interference between the microscopic tunneling contributions for individual apertures leads to an effective coupling between apertures which amplifies the Josephson oscillations in the array. The resulting multi-aperture current-phase equations are found to be equivalent to a set of equations for coupled pendula, with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte
    • 

    corecore