648 research outputs found

    Changes in fMRI BOLD dynamics reflect anticipation to moving objects

    Get PDF
    The human brain is thought to respond differently to novel versus predictable neural input. In human visual cortex, neural response amplitude to visual input might be determined by the degree of predictability. We investigated how fMRI BOLD responses in human early visual cortex reflect the anticipation of a single moving bar's trajectory. We found that BOLD signals decreased linearly from onset to offset of the stimulus trajectory. Moreover, decreased amplitudes of BOLD responses coincided with an increased initial dip as the stimulus moved along its trajectory. Importantly, motion anticipation effects were absent, when motion coherence was disrupted by means of stimulus contrast reversals. These results show that human early visual cortex anticipates the trajectory of a coherently moving object at the initial stages of visual motion processing. The results can be explained by suppression of predictable input, plausibly underlying the formation of stable visual percepts

    Superconductivity and hybrid soft modes in TiSe2_2

    Get PDF
    The competition between superconductivity and other ground states of solids is one of the challenging topics in condensed matter physics. Apart from high-temperature superconductors [1,2] this interplay also plays a central role in the layered transition-metal dichalcogenides, where superconductivity is stabilized by suppressing charge-density-wave order to zero temperature by intercalation [3] or applied pressure [4-7]. 1T-TiSe2_2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cux_xTiSe2_2 and pressurized 1T-TiSe2_2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. We argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. These results indicate that 1T-TiSe2_2 under pressure is close to the elusive state of the excitonic insulator

    Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water

    Get PDF
    This study investigates human exposure to per- and polyfluoroalkyl substances (PFAS) via drinking water and evaluates human health risks. An analytical method for 56 target PFAS, including ultrashort-chain (C2–C3) and branched isomers, was developed. The limit of detection (LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L, respectively. The method was applied to raw and produced drinking water from 18 Dutch locations, including groundwater or surface water as source, and applied various treatment processes. Ultrashort-chain (300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids (PFCA, ≥C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid (≥C4), including precursors, showed significantly higher levels in drinking water produced from surface water. However, no significant difference was found for ultrashort PFAS, indicating the need for groundwater protection. Negative removal of PFAS occasionally observed for advanced treatment indicates desorption and/or degradation of precursors. The proportion of branched isomers was higher in raw and produced drinking water as compared to industrial production. Drinking water produced from surface water, except for a few locations, exceed non-binding provisional guideline values proposed; however, all produced drinking waters met the recent soon-to-be binding drinking-water-directive requirements

    An Alternative Interpretation of Recent ARPES Measurements on TiSe2

    Full text link
    Recently there has been a renewed interest in the charge density wave transition of TiSe2, fuelled by the possibility that this transition may be driven by the formation of an excitonic insulator or even an excitonic condensate. We show here that the recent ARPES measurements on TiSe2 can also be interpreted in terms of an alternative scenario, in which the transition is due to a combination of Jahn-Teller effects and exciton formation. The hybrid exciton-phonons which cause the CDW formation interpolate between a purely structural and a purely electronic type of transition. Above the transition temperature, the electron-phonon coupling becomes ineffective but a finite mean-field density of excitons remains and gives rise to the observed diffuse ARPES signals.Comment: 4 pages, 2 figure

    The Chitobiose-Binding Protein, DasA, Acts as a Link between Chitin Utilization and Morphogenesis in Streptomyces Coelicolor

    Full text link
    Streptomycetes are mycelial soil bacteria that undergo a developmental programme that leads to sporulating aerial hyphae. As soil-dwelling bacteria, streptomycetes rely primarily on natural polymers such as cellulose, xylan and chitin for the colonization of their environmental niche and therefore these polysaccharides may play a critical role in monitoring the global nutritional status of the environment. In this work we analysed the role of DasA, the sugar-binding component of the chitobiose ATP-binding cassette transport system, in informing the cell of environmental conditions, and its role in the onset of development and in ensuring correct sporulation. The chromosomal interruption of dasA resulted in a carbon-source-dependent vegetative arrest phenotype, and we identified a second DasR-dependent sugar transporter, in addition to the N-acetylglucosamine phosphotransferase system (PTS(GlcNAc)), that relates primary metabolism to development. Under conditions that allowed sporulation, highly aberrant spores with many prematurely produced germ tubes were observed. While GlcNAc locks streptomycetes in the vegetative state, a high extracellular concentration of the GlcNAc polymer chitin has no effect on development. The striking distinction is due to a difference in the transporters responsible for the import of GlcNAc, which enters via the PTS, and of chitin, which enters as the hydrolytic product chitobiose (GlcNAc(2)) through the DasABC transporter. A model explaining the role of these two essentially different transport systems in the control of development is provided
    corecore