9 research outputs found

    Clinical Perspectives on Using Remote Measurement Technology in Assessing Epilepsy, Multiple Sclerosis, and Depression: Delphi Study

    Get PDF
    Background: Multiple sclerosis (MS), epilepsy, and depression are chronic central nervous system conditions in which remote measurement technology (RMT) may offer benefits compared with usual assessment. We previously worked with clinicians, patients, and researchers to develop 13 use cases for RMT: 5 in epilepsy (seizure alert, seizure counting, risk scoring, triage support, and trend analysis), 3 in MS (detecting silent progression, detecting depression in MS, and donating data to a biobank), and 5 in depression (detecting trends, reviewing treatment, self-management, comorbid monitoring, and carer alert). Objective: In this study, we aimed to evaluate the use cases and related implementation issues with an expert panel of clinicians external to our project consortium. Methods: We used a Delphi exercise to validate the use cases and suggest a prioritization among them and to ascertain the importance of a variety of implementation issues related to RMT. The expert panel included clinicians from across Europe who were external to the project consortium. The study had 2 survey rounds (n=23 and n=17) and a follow-up interview round (n=9). Data were analyzed for consensus between participants and for stability between survey rounds. The interviews explored the reasons for answers given in the survey. Results: The findings showed high stability between rounds on questions related to specific use cases but lower stability on questions relating to wider issues around the implementation of RMT. Overall, questions on wider issues also had less consensus. All 5 use cases for epilepsy (seizure alert, seizure counting, risk scoring, triage support, and trend analysis) were considered beneficial, with consensus among participants above the a priori threshold for most questions, although use case 3 (risk scoring) was considered less likely to facilitate or catalyze care. There was very little consensus on the benefits of the use cases in MS, although this may have resulted from a higher dropout rate of MS clinicians (50%). Participants agreed that there would be benefits for all 5 of the depression use cases, although fewer questions on use case 4 (triage support) reached consensus agreement than for depression use cases 1 (detecting trends), 2 (reviewing treatment), 3 (self-management), and 5 (carer alert). The qualitative analysis revealed further insights into each use case and generated 8 themes on practical issues related to implementation. Conclusions: Overall, these findings inform the prioritization of use cases for RMT that could be developed in future work, which may include clinical trials, cost-effectiveness studies, and the commercial development of RMT products and services. Priorities for further development include the use of RMT to provide more accurate records of symptoms and treatment response than is currently possible and to provide data that could help inform patient triage and generate timely alerts for patients and carers

    Autonomic response to walk tests is useful for assessing outcome measures in people with multiple sclerosis

    Get PDF
    Objective: The aim of this study was to evaluate the association between changes in the autonomic control of cardiorespiratory system induced by walk tests and outcome measures in people with Multiple Sclerosis (pwMS).Methods: Electrocardiogram (ECG) recordings of 148 people with Relapsing-Remitting MS (RRMS) and 58 with Secondary Progressive MS (SPMS) were acquired using a wearable device before, during, and after walk test performance from a total of 386 periodical clinical visits. A subset of 90 participants repeated a walk test at home. Various MS-related symptoms, including fatigue, disability, and walking capacity were evaluated at each clinical visit, while heart rate variability (HRV) and ECG-derived respiration (EDR) were analyzed to assess autonomic nervous system (ANS) function. Statistical tests were conducted to assess differences in ANS control between pwMS grouped based on the phenotype or the severity of MS-related symptoms. Furthermore, correlation coefficients (r) were calculated to assess the association between the most significant ANS parameters and MS-outcome measures.Results: People with SPMS, compared to RRMS, reached higher mean heart rate (HRM) values during walk test, and larger sympathovagal balance after test performance. Furthermore, pwMS who were able to adjust their HRM and ventilatory values, such as respiratory rate and standard deviation of the ECG-derived respiration, were associated with better clinical outcomes. Correlation analyses showed weak associations between ANS parameters and clinical outcomes when the Multiple Sclerosis phenotype is not taken into account. Blunted autonomic response, in particular HRM reactivity, was related with worse walking capacity, yielding r = 0.36 r = 0.29 (RRMS) and r > 0.5 (SPMS). A positive strong correlation r > 0.7 r > 0.65 between cardiorespiratory parameters derived at hospital and at home was also found.Conclusion: Autonomic function, as measured by HRV, differs according to MS phenotype. Autonomic response to walk tests may be useful for assessing clinical outcomes, mainly in the progressive stage of MS. Participants with larger changes in HRM are able to walk longer distance, while reduced ventilatory function during and after walk test performance is associated with higher fatigue and disability severity scores. Monitoring of disorder severity could also be feasible using ECG-derived cardiac and respiratory parameters recorded with a wearable device at home

    Key Drivers and Facilitators of the Choice to Use mHealth Technology in People With Neurological Conditions:Observational Study

    No full text
    BACKGROUND: There is increasing interest in the potential uses of mobile health (mHealth) technologies, such as wearable biosensors, as supplements for the care of people with neurological conditions. However, adherence is low, especially over long periods. If people are to benefit from these resources, we need a better long-term understanding of what influences patient engagement. Previous research suggests that engagement is moderated by several barriers and facilitators, but their relative importance is unknown. OBJECTIVE: To determine preferences and the relative importance of user-generated factors influencing engagement with mHealth technologies for 2 common neurological conditions with a relapsing-remitting course: multiple sclerosis (MS) and epilepsy. METHODS: In a discrete choice experiment, people with a diagnosis of MS (n=141) or epilepsy (n=175) were asked to select their preferred technology from a series of 8 vignettes with 4 characteristics: privacy, clinical support, established benefit, and device accuracy; each of these characteristics was greater or lower in each vignette. These characteristics had previously been emphasized by people with MS and or epilepsy as influencing engagement with technology. Mixed multinomial logistic regression models were used to establish which characteristics were most likely to affect engagement. Subgroup analyses explored the effects of demographic factors (such as age, gender, and education), acceptance of and familiarity with mobile technology, neurological diagnosis (MS or epilepsy), and symptoms that could influence motivation (such as depression). RESULTS: Analysis of the responses to the discrete choice experiment validated previous qualitative findings that a higher level of privacy, greater clinical support, increased perceived benefit, and better device accuracy are important to people with a neurological condition. Accuracy was perceived as the most important factor, followed by privacy. Clinical support was the least valued of the attributes. People were prepared to trade a modest amount of accuracy to achieve an improvement in privacy, but less likely to make this compromise for other factors. The type of neurological condition (epilepsy or MS) did not influence these preferences, nor did the age, gender, or mental health status of the participants. Those who were less accepting of technology were the most concerned about privacy and those with a lower level of education were prepared to trade accuracy for more clinical support. CONCLUSIONS: For people with neurological conditions such as epilepsy and MS, accuracy (ie, the ability to detect symptoms) is of the greatest interest. However, there are individual differences, and people who are less accepting of technology may need far greater reassurance about data privacy. People with lower levels of education value greater clinician involvement. These patient preferences should be considered when designing mHealth technologies

    Human-Centered Design Strategies for Device Selection in mHealth Programs: Development of a Novel Framework and Case Study

    No full text
    BACKGROUND: Despite the increasing use of remote measurement technologies (RMT) such as wearables or biosensors in health care programs, challenges associated with selecting and implementing these technologies persist. Many health care programs that use RMT rely on commercially available, "off-the-shelf" devices to collect patient data. However, validation of these devices is sparse, the technology landscape is constantly changing, relative benefits between device options are often unclear, and research on patient and health care provider preferences is often lacking. OBJECTIVE: To address these common challenges, we propose a novel device selection framework extrapolated from human-centered design principles, which are commonly used in de novo digital health product design. We then present a case study in which we used the framework to identify, test, select, and implement off-the-shelf devices for the Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) consortium, a research program using RMT to study central nervous system disease progression. METHODS: The RADAR-CNS device selection framework describes a human-centered approach to device selection for mobile health programs. The framework guides study designers through stakeholder engagement, technology landscaping, rapid proof of concept testing, and creative problem solving to develop device selection criteria and a robust implementation strategy. It also describes a method for considering compromises when tensions between stakeholder needs occur. RESULTS: The framework successfully guided device selection for the RADAR-CNS study on relapse in multiple sclerosis. In the initial stage, we engaged a multidisciplinary team of patients, health care professionals, researchers, and technologists to identify our primary device-related goals. We desired regular home-based measurements of gait, balance, fatigue, heart rate, and sleep over the course of the study. However, devices and measurement methods had to be user friendly, secure, and able to produce high quality data. In the second stage, we iteratively refined our strategy and selected devices based on technological and regulatory constraints, user feedback, and research goals. At several points, we used this method to devise compromises that addressed conflicting stakeholder needs. We then implemented a feedback mechanism into the study to gather lessons about devices to improve future versions of the RADAR-CNS program. CONCLUSIONS: The RADAR device selection framework provides a structured yet flexible approach to device selection for health care programs and can be used to systematically approach complex decisions that require teams to consider patient experiences alongside scientific priorities and logistical, technical, or regulatory constraints.status: publishe

    Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design.

    No full text
    ImportanceSARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.MethodsRECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.DiscussionRECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.RegistrationNCT05172024

    Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design.

    No full text
    IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. METHODS: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. DISCUSSION: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options. REGISTRATION: NCT05172024
    corecore