1,971 research outputs found
Transverse force on a quantized vortex in a superconductor
The total transverse force acting on a quantized vortex in a type-II
superconductor determines the Hall response in the mixed state, yet a consensus
as to its correct form is still lacking. In this paper we present an
essentially exact expression for this force, valid in the superclean limit,
which was obtained by generalizing the recent work by Thouless, Ao, and Niu [D.
J. Thouless, P. Ao, and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996)] on the Magnus
force in a neutral superfluid. We find the transverse force per unit length to
be , where is the sum of the
mass densities of the normal and superconducting components, is a vector
parallel to the line vortex with a magnitude equal to the quantized
circulation, and is the vortex velocity.Comment: 4 pages, Revtex, 1 figur
Hypernetted-chain study of broken rotational symmetry states for the = 1/3 fractional quantum Hall effect and other fractionally filled Landau levels
We investigate broken rotational symmetry (BRS) states for the fractional
quantum Hall effect (FQHE) at 1/3-filling of the valence Landau level (LL).
Recent Monte Carlo calculations by Musaelian and Joynt [J. Phys.: Condens.\
Matter {\bf 8}, L105 (1996)] suggest that Laughlin's state becomes unstable to
a BRS state for some critical finite thickness value. We study in detail the
properties of such state by performing a hypernetted-chain calculation that
gives results in the thermodynamic limit, complementing other methods which are
limited to a finite number of particles. Our results indicate that while
Laughlin's state is stable in the lowest LL, in higher LLs a BRS instability
occurs, perhaps indicating the absence of FQHE at partial fillings of higher
LLs. Possible connections to the newly discovered liquid crystalline phases in
higher LLs are also discussed.Comment: 7 pages including 3 eps figure
Phase Transitions in Hexane Monolayers Physisorbed onto Graphite
We report the results of molecular dynamics (MD) simulations of a complete
monolayer of hexane physisorbed onto the basal plane of graphite. At low
temperatures the system forms a herringbone solid. With increasing temperature,
a solid to nematic liquid crystal transition takes place at K
followed by another transition at K into an isotropic fluid.
We characterize the different phases by calculating various order parameters,
coordinate distributions, energetics, spreading pressure and correlation
functions, most of which are in reasonable agreement with available
experimental evidence. In addition, we perform simulations where the
Lennard-Jones interaction strength, corrugation potential strength and dihedral
rigidity are varied in order to better characterize the nature of the two
transitions through. We find that both phase transitions are facilitated by a
``footprint reduction'' of the molecules via tilting, and to a lesser degree
via creation of gauche defects in the molecules.Comment: 18 pages, eps figures embedded, submitted to Phys. Rev.
Design and performance of ropes for climbing and sailing
Ropes are an important part of the equipment used by climbers, mountaineers, and sailors. On first inspection, most modern polymer ropes appear similar, and it might be assumed that their designs, construction, and properties are governed by the same requirements. In reality, the properties required of climbing ropes are dominated by the requirement that they effectively absorb and dissipate the energy of the falling climber, in a manner that it does not transmit more than a critical amount of force to his body. This requirement is met by the use of ropes with relatively low longitudinal stiffness. In contrast, most sailing ropes require high stiffness values to maximize their effectiveness and enable sailors to control sails and equipment precisely. These conflicting requirements led to the use of different classes of materials and different construction methods for the two sports. This paper reviews in detail the use of ropes, the properties required, manufacturing techniques and materials utilized, and the effect of service conditions on the performance of ropes. A survey of research that has been carried out in the field reveals what progress has been made in the development of these essential components and identifies where further work may yield benefits in the future
Electrical current-driven pinhole formation and insulator-metal transition in tunnel junctions
Current Induced Resistance Switching (CIS) was recently observed in thin
tunnel junctions (TJs) with ferromagnetic (FM) electrodes and attributed to
electromigration of metallic atoms in nanoconstrictions in the insulating
barrier. The CIS effect is here studied in TJs with two thin (20 \AA)
non-magnetic (NM) Ta electrodes inserted above and below the insulating
barrier. We observe resistance (R) switching for positive applied electrical
current (flowing from the bottom to the top lead), characterized by a
continuous resistance decrease and associated with current-driven displacement
of metallic ions from the bottom electrode into the barrier (thin barrier
state). For negative currents, displaced ions return into their initial
positions in the electrode and the electrical resistance gradually increases
(thick barrier state). We measured the temperature (T) dependence of the
electrical resistance of both thin- and thick-barrier states ( and R
respectively). Experiments showed a weaker R(T) variation when the tunnel
junction is in the state, associated with a smaller tunnel contribution.
By applying large enough electrical currents we induced large irreversible
R-decreases in the studied TJs, associated with barrier degradation. We then
monitored the evolution of the R(T) dependence for different stages of barrier
degradation. In particular, we observed a smooth transition from tunnel- to
metallic-dominated transport. The initial degradation-stages are related to
irreversible barrier thickness decreases (without the formation of pinholes).
Only for later barrier degradation stages do we have the appearance of metallic
paths between the two electrodes that, however, do not lead to metallic
dominated transport for small enough pinhole radius.Comment: 10 pages, 3 figure
Scattering of Phonons by a Vortex in a Superfluid
Recent work gives a transverse force on an isolated moving vortex which is
independent of the normal fluid velocity, but it is widely believed that the
asymmetry of phonon scattering by a vortex leads to a transverse force
dependent on the relative motion of the normal component and the vortex. We
show that a widely accepted derivation of the transverse force is in error, and
that a careful evaluation leads to a much smaller transverse force. We argue
that a different approach is needed to get the correct expression.
\pacs{67.40.Vs,67.57.Fg,47.37.+q,47.32.Cc}Comment: 4 page
A Map of Update Constraints in Inductive Inference
We investigate how different learning restrictions reduce learning power and
how the different restrictions relate to one another. We give a complete map
for nine different restrictions both for the cases of complete information
learning and set-driven learning. This completes the picture for these
well-studied \emph{delayable} learning restrictions. A further insight is
gained by different characterizations of \emph{conservative} learning in terms
of variants of \emph{cautious} learning.
Our analyses greatly benefit from general theorems we give, for example
showing that learners with exclusively delayable restrictions can always be
assumed total.Comment: fixed a mistake in Theorem 21, result is the sam
Acoustic Energy and Momentum in a Moving Medium
By exploiting the mathematical analogy between the propagation of sound in a
non-homogeneous potential flow and the propagation of a scalar field in a
background gravitational field, various wave ``energy'' and wave ``momentum''
conservation laws are established in a systematic manner. In particular the
acoustic energy conservation law due to Blokhintsev appears as the result of
the conservation of a mixed co- and contravariant energy-momentum tensor, while
the exchange of relative energy between the wave and the mean flow mediated by
the radiation stress tensor, first noted by Longuet-Higgins and Stewart in the
context of ocean waves, appears as the covariant conservation of the doubly
contravariant form of the same energy-momentum tensor.Comment: 25 Pages, Late
Charge and current oscillations in Fractional quantum Hall systems with edges
Stationary solutions of the Chern-Simons effective field theory for the
fractional quantum Hall systems with edges are presented for Hall bar, disk and
annulus. In the infinitely long Hall bar geometry (non compact case), the
charge density is shown to be monotonic inside the sample. In sharp contrast,
spatial oscillatory modes of charge density are found for the two circular
geometries, which indicate that in systems with compact geometry, charge and
current exist also far from the edges.Comment: 16 pages, 6 figures Revte
Physics on the edge: contour dynamics, waves and solitons in the quantum Hall effect
We present a theoretical study of the excitations on the edge of a
two-dimensional electron system in a perpendicular magnetic field in terms of a
contour dynamics formalism. In particular, we focus on edge excitations in the
quantum Hall effect. Beyond the usual linear approximation, a non-linear
analysis of the shape deformations of an incompressible droplet yields soliton
solutions which correspond to shapes that propagate without distortion. A
perturbative analysis is used and the results are compared to analogous
systems, like vortex patches in ideal hydrodynamics. Under a local induction
approximation we find that the contour dynamics is described by a non-linear
partial differential equation for the curvature: the modified Korteweg-de Vries
equation.
PACS number(s): 73.40.Hm, 02.40.Ma, 03.40.Gc, 11.10.LmComment: 15 pages, 12 embedded figures, submitted to Phys. Rev.
- …