1,527 research outputs found

    A multi-sensor analysis of Nimbus 5 data on 22 January 1973

    Get PDF
    The Nimbus 5 meteorological satellite carried aloft a full complement of radiation sensors, the data from which were analyzed and intercompared during orbits 569-570 on 22 January 1973. The electrically scanning microwave radiometer (ESMR) which sensed passive microwave radiation in the 19.35 GHz region, delineated rain areas over the ocean off the U.S. east coast, in good agreement with WSR-57 and FPS-77 radar imagery and permitted the estimation of rainfall rates in this region. Residual ground water in the lower Mississippi Valley, which resulted from abnormal rainfall in previous months, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 ESMR and U.S. Air Force Data Acquisition and Processing Program (DAPP) IR data. The temperature-humidity infrared radiometer showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad sub-tropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders, the infrared temperature profile radiometer (ITPR), the Nimbus E microwave spectrometer (NEMS) and the selective chopper radiometer (SCR) were found to be in good agreement with related radiosonde ascents along orbit 569 from the sub-tropics to the Arctic Circle

    A multisensor analysis of Nimbus-5 data recorded on 22 January 1973

    Get PDF
    The Nimbus 5 meteorological satellite has a full complement of radiation sensors. Data from these sensors were analyzed and intercompared for orbits 569 and 570. The electrically-scanning microwave radiometer (19.35-GHz region) delineated rain areas over the ocean off the U.S. east coast, in good agreement with radar imagery, and permitted the estimation of rainfall rates in this region. Residual ground water, from abnormal rainfall in the lower Mississippi Valley, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 electrically scanning microwave radiometer and U.S. Air Force Data Acquisition and Processing Program infrared data. The temperature-humidity infrared radiometer (6.7 micron and 11 micron) showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad subtropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders are found to be in good agreement with related radiosonde ascents along orbit 569 from the subtropics to the Arctic Circle

    Transverse force on a quantized vortex in a superconductor

    Full text link
    The total transverse force acting on a quantized vortex in a type-II superconductor determines the Hall response in the mixed state, yet a consensus as to its correct form is still lacking. In this paper we present an essentially exact expression for this force, valid in the superclean limit, which was obtained by generalizing the recent work by Thouless, Ao, and Niu [D. J. Thouless, P. Ao, and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996)] on the Magnus force in a neutral superfluid. We find the transverse force per unit length to be f=ρK×Vf = \rho K \times V, where ρ=ρn+ρs\rho = \rho_{n} + \rho_{s} is the sum of the mass densities of the normal and superconducting components, KK is a vector parallel to the line vortex with a magnitude equal to the quantized circulation, and VV is the vortex velocity.Comment: 4 pages, Revtex, 1 figur

    Monte Carlo simulation method for Laughlin-like states in a disk geometry

    Get PDF
    We discuss an alternative accurate Monte Carlo method to calculate the ground-state energy and related quantities for Laughlin states of the fractional quantum Hall effect in a disk geometry. This alternative approach allows us to obtain accurate bulk regime (thermodynamic limit) values for various quantities from Monte Carlo simulations with a small number of particles (much smaller than that needed with standard Monte Carlo approaches).Comment: 13 pages, 6 figures, 2 table

    Scattering of Phonons by a Vortex in a Superfluid

    Full text link
    Recent work gives a transverse force on an isolated moving vortex which is independent of the normal fluid velocity, but it is widely believed that the asymmetry of phonon scattering by a vortex leads to a transverse force dependent on the relative motion of the normal component and the vortex. We show that a widely accepted derivation of the transverse force is in error, and that a careful evaluation leads to a much smaller transverse force. We argue that a different approach is needed to get the correct expression. \pacs{67.40.Vs,67.57.Fg,47.37.+q,47.32.Cc}Comment: 4 page

    Longitudinal Force on a Moving Potential

    Full text link
    We show a formal result of the longitudinal force acting on a moving potential. The potential can be velocity-dependent, which appears in various interesting physical systems, such as electrons in the presence of a magnetic flux-line, or phonons scattering off a moving vortex. By using the phase-shift analysis, we are able to show the equivalence between the adiabatic perturbation theory and the kinetic theory for the longitudinal force in the dilute gas limit.Comment: RevTeX, 4 pages, revised tex

    Magnus and Iordanskii Forces in Superfluids

    Full text link
    The total transverse force acting on a quantized vortex in a superfluid is a problem that has eluded a complete understanding for more than three decades. In this letter I propose a remarkably simple argument, somewhat reminiscent of Laughlin's beautiful argument for the quantization of conductance in the quantum Hall effect, to define the superfluid velocity part of the transverse force. This term is found to be ρsκs×vs- \rho_s {\kappa}_s \times {v}_s. Although this result does not seem to be overly controversial, this thermodynamic argument based only on macroscopic properties of the superfluid does offer a robust derivation. A recent publication by Thouless, Ao and Niu has demonstrated that the vortex velocity part of the transverse force in a homogeneous neutral superfluid is given by the usual form ρsκs×vV\rho_s {\kappa}_s \times {v}_V. A combination of these two independent results and the required Galilean invariance yields that there cannot be any transverse force proportional to the normal fluid velocity, in apparent conflict with Iordanskii's theory of the transverse force due to phonon scattering by the vortex.Comment: RevTex, 1 Encapsulated Postscript figur

    Hypernetted-chain study of broken rotational symmetry states for the ν\bm{\nu} = 1/3 fractional quantum Hall effect and other fractionally filled Landau levels

    Get PDF
    We investigate broken rotational symmetry (BRS) states for the fractional quantum Hall effect (FQHE) at 1/3-filling of the valence Landau level (LL). Recent Monte Carlo calculations by Musaelian and Joynt [J. Phys.: Condens.\ Matter {\bf 8}, L105 (1996)] suggest that Laughlin's state becomes unstable to a BRS state for some critical finite thickness value. We study in detail the properties of such state by performing a hypernetted-chain calculation that gives results in the thermodynamic limit, complementing other methods which are limited to a finite number of particles. Our results indicate that while Laughlin's state is stable in the lowest LL, in higher LLs a BRS instability occurs, perhaps indicating the absence of FQHE at partial fillings of higher LLs. Possible connections to the newly discovered liquid crystalline phases in higher LLs are also discussed.Comment: 7 pages including 3 eps figure

    Vortex vs spinning string: Iordanskii force and gravitational Aharonov-Bohm effect

    Full text link
    We discuss the transverse force acting on the spinning cosmic string, moving in the background matter. It comes from the gravitational Aharonov-Bohm effect and corresponds to the Iordanskii force acting on the vortex in superfluids, when the vortex moves with respect to the normal component of the liquid.Comment: Latex file, 9 pages, no figures, references are added, version submitted to JETP Let

    Dynamic vortex mass in clean Fermi superfluids and superconductors

    Full text link
    We calculate the dynamic vortex mass for clean Fermi superfluids including both s- and d-wave superconductors as a response to a vortex acceleration. Assuming a finite quasiparticle mean free time, the vortex mass appears to be a tensor. The diagonal component dominates in the limit of long mean free time while the off-diagonal mass takes over in the moderately clean regime.Comment: 4 pages, no figures, typeset using RevTe
    corecore