16 research outputs found

    Cellular Probabilistic Automata - A Novel Method for Uncertainty Propagation

    Full text link
    We propose a novel density based numerical method for uncertainty propagation under certain partial differential equation dynamics. The main idea is to translate them into objects that we call cellular probabilistic automata and to evolve the latter. The translation is achieved by state discretization as in set oriented numerics and the use of the locality concept from cellular automata theory. We develop the method at the example of initial value uncertainties under deterministic dynamics and prove a consistency result. As an application we discuss arsenate transportation and adsorption in drinking water pipes and compare our results to Monte Carlo computations

    Nonlinear frequency response analysis of structural vibrations

    Get PDF
    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we use the isogeometric finite element method, which has already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems

    Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations

    No full text

    Nonlinear frequency response analysis of structural vibrations

    Get PDF
    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems

    On the use of modal derivatives for nonlinear model order reduction

    No full text
    Modal derivative is an approach to compute a reduced basis for model order reduction of large-scale nonlinear systems that typically stem from the discretization of partial differential equations. In this way, a complex nonlinear simulation model can be integrated into an optimization problem or the design of a controller, based on the resulting small-scale state-space model. We investigate the approximation properties of modal derivatives analytically and thus lay a theoretical foundation of their use in model order reduction, which has been missing so far. Concentrating on the application field of structural mechanics and structural dynamics, we show that the concept of modal derivatives can also be applied as nonlinear extension of the Craig–Bampton family of methods for substructuring. We furthermore generalize the approach from a pure projection scheme to a novel reduced-order modeling method that replaces all nonlinear terms by quadratic expressions in the reduced state variables. This complexity reduction leads to a frequency-preserving nonlinear quadratic state-space model. Numerical examples with carefully chosen nonlinear model problems and three-dimensional nonlinear elasticity confirm the analytical properties of the modal derivative reduction and show the potential of the proposed novel complexity reduction methods, along with the current limitations

    Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations

    No full text
    In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometricfinite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), fordescribing the geometry and for representing the numericalsolution. In case of linear vibrational analysis, this approachhas already been shown to possess substantial advantages over classical finite elements, and we extend it here to a non-linear framework based on the harmonic balance principle. As application, the straight nonlinear Euler-Bernoulli beamis used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysisof nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method forisogeometric nonlinear vibration analysis

    Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations

    Get PDF
    In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometric finite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), for describing the geometry and for representing the numerical solution. In case of linear vibrational analysis, this approach has already been shown to possess substantial advantages over classical finite elements, and we extend it here to a nonlinear framework based on the harmonic balance principle. As application, the straight nonlinear Euler-Bernoulli beam is used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysis of nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method for isogeometric nonlinear vibration analysis

    Nonlinear frequency response analysis of structural vibrations

    No full text
    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we use the isogeometric finite element method, which has already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems
    corecore