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Abstract In this paper we present a method for nonlinear
frequency response analysis of mechanical vibrations of 3-
dimensional solid structures. For computing nonlinear fre-
quency response to periodic excitations, we employ the well-
established harmonic balance method. A fundamental as-
pect for allowing a large-scale application of the method
is model order reduction of the discretized equation of mo-
tion. Therefore we propose the utilization of a modal pro-
jection method enhanced with modal derivatives, providing
second-order information. For an efficient spatial discretiza-
tion of continuum mechanics nonlinear partial differential
equations, including large deformations and hyperelastic ma-
terial laws, we employ the concept of isogeometric analy-
sis. Isogeometric finite element methods have already been
shown to possess advantages over classical finite element
discretizations in terms of higher accuracy of numerical ap-
proximations in the fields of linear vibration and static large
deformation analysis. With several computational examples,
we demonstrate the applicability and accuracy of the modal
derivative reduction method for nonlinear static computa-
tions and vibration analysis. Thus, the presented method opens
a promising perspective on application of nonlinear frequency
analysis to large-scale industrial problems.
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1 Introduction

Vibration analysis and nonlinear structural analysis both play
an important role in the industrial mechanical engineering
process, but so far there are no efficient methods available
for a nonlinear structural frequency response analysis on a
large scale.

For nonlinear frequency response analysis we use the
harmonic balance method (HBM) [1–3], which transforms
and solves the underlying equation of motion in the fre-
quency domain. In previous work we have already inves-
tigated nonlinear structural vibrations with isogeometric fi-
nite elements and harmonic balance, and have demonstrated
its applicability using the nonlinear Euler-Bernoulli beam
structural model [4]. Now we extended this method to 3-
dimensional nonlinear structural mechanics with large de-
formations and hyperelastic material laws [5, 6].

Though harmonic balance is a well-established method
for nonlinear frequency analysis, for example in the context
of integrated circuit simulations [7,8], it is so far hardly used
in mechanics, only for lower dimensional structural mod-
els such as beams and plates [9–13]. Commercial finite el-
ement analysis (FEA) software such as ANSYS, Nastran or
ABAQUS do not provide any methods dedicated to nonlin-
ear frequency response. This is mainly due to the truncated
Fourier expansion HBM uses for frequency domain approx-
imation of each degree of freedom (DOF) of the spatial dis-
cretization, which produces a blow-up of total DOFs: the
sparse linear system to be solved in the end is not only m-
times bigger, but also with m-times as many non-zero entries
per row as the spatial discretization, where m is the number
of Fourier coefficients.

Therefore we need model order reduction (MOR) of the
spatial discretization to reduce the size of the linear system
significantly and make an efficient numerical solution of the
system arising from HBM even possible.
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While modal reduction, where the equation of motion is
projected onto a subspace spanned by a selection of eigen-
modes, is a well-established technique in linear FEA and
vibration analysis [14], more advanced methods are needed
in the nonlinear context [5,15]. For example in [16] a single-
DOF reduction on nonlinear modes was introduced.

We propose to use a modal reduction with modal deriva-
tives [17,18], which are a second-order enhancement of lin-
ear eigenmodes. The method has been successfully applied
in nonlinear dynamic analysis by time-integration before [19–
22], and we show that it is especially suitable in our non-
linear vibration framework with harmonic balance. In con-
trast to most other common reduction methods so far used
in nonlinear time-integration, it does not require a current
state of deformation of the system and continuous basis up-
dates, thus the projection basis can be fully pre-computed
based on the linear system. Furthermore there are also sim-
ilar well-established techniques of second-order enhance-
ments in other fields of computational engineering such as
uncertainty quantification [23].

For the spatial semi-discretization of the structural vi-
bration problem we rely on the isogeometric finite element
method, i.e. a spline-based Galerkin method, but note that
the proposed nonlinear frequency analysis method with modal
derivative reduction could be applied using any spatial dis-
cretization method. Isogeometric analysis (IGA) was intro-
duced by Hughes et al. [24] in 2005 and aims at closing
the gap between computer-aided design (CAD), numerical
simulation and manufacturing (CAM) by using the same
geometry representation throughout the whole engineering
process. As spline functions, such as B-Splines and non-
uniform rational B-Splines (NURBS) [25], are typically used
for geometry design in CAD software, in IGA these func-
tions are also employed for discretization of geometry and
numerical solution in an isoparametric fashion. This concept
has already been successfully applied to several numerical
discretization methods, such as boundary elements, colloca-
tion, finite volumes, and, of course, isogeometric finite el-
ements [24, 26–28]. A detailed introduction into IGA and
collection of numerical analysis, properties and applications
of the method can be found in the monograph [29].

It has been shown that isogeometric analysis using spline-
based finite elements has substantial advantages over classi-
cal Lagrangian finite elements in the context of linear vi-
bration analysis, i.e. solution of eigenvalue problems, where
so-called optical and acoustical branches are avoided, which
leads to a much higher accuracy especially in higher eigen-
frequencies [30]. In general, IGA provides higher accuracy
per DOF for numerical solution of linear elliptic, parabolic
and hyperbolic partial differential equations (PDEs) than stan-
dard finite element methods due to higher continuity of splines,
whereas rates of convergence are the same [29, 31]. The
method has also been applied in nonlinear continuum me-

chanics, where the advantages of the approach could be ver-
ified [32–34].

The further structure of this paper after this introduc-
tory Section 1 is as follows: We continue with a summary of
continuum mechanics equations of large deformation hyper-
elasticity and their isogeometric finite element discretization
in Section 2. Then we give a brief review of modal anal-
ysis and direct frequency response as means of linear vi-
bration analysis in Section 3, before we introduce the har-
monic balance method in application to nonlinear structural
frequency response. Section 4 is dedicated to model order
reduction methods, with a review of commonly used meth-
ods followed by a detailed introduction into modal reduction
with the concept of modal derivatives. With the computa-
tional examples presented in Section 5, we prove the func-
tioning of our framework for nonlinear structural vibration
analysis and show that it is suitable for large-scale applica-
tions. Then we conclude with a short summary of the work
presented and give an outlook on future research directions
in Section 6.

2 Isogeometric finite element discretization of large
deformation hyperelasticity

In this work we address the numerical simulation of dy-
namic behaviour of mechanical structures described by ge-
ometrical and material nonlinearities. Therefore in this sec-
tion we give a summary of the theory of continuum mechan-
ics with large deformation kinematics and constitutive laws
of hyperelasticity. Then we derive the spatial discretization
of governing equations using isogeometric finite elements.

2.1 Kinematics and constitutive laws

First we want to give a brief review of the Total Lagrangian
formulation of kinematics and constitutive relations of solids
subject to large deformations and hyperelastic material be-
haviour, based on the monographs [5, 6].

In the Total Lagrangian point of view, motion and defor-
mation of a body over time are described with respect to its
initial configuration given by the domain Ω ∈ R3. At every
time t in the interval of interest [0,T ], the current position
x ∈Ωt ⊂R3 of each point X ∈Ω can be expressed in terms
of its initial position and a displacement field u ∈ R3 (see
also Figure 1):

x(X, t) = X+u(X, t). (1)

For the description of the deformation process we need the
deformation gradient, i.e. the spatial gradient of current w.r.t.
to initial position of each point:

F(X, t) =
dx
dX

(X, t) = I+
du
dX

(X, t) = I+∇u(X, t). (2)
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Fig. 1: Motion of the body with domain Ω

The Jacobian determinant J = detF is a measure of the vol-
ume change of the body. For incompressible materials, which
are not subject of this work, it holds J = 1.

Furthermore we need a strain measure defined in the ini-
tial configuration, the Green-Lagrange strain tensor

E(X, t) =
1
2
(
C(X, t)− I

)
. (3)

It is defined using the right Cauchy-Green tensor

C(X, t) = FT F = I+∇uT +∇u+∇uT
∇u, (4)

which is a quadratic expression in terms of displacements
resp. the deformation gradient. In linear elasticity theory the
higher order term is omitted and the linear strain measure is
used:

e(X, t) =
1
2
(
∇uT +∇u

)
. (5)

Velocity and acceleration of a point in the reference con-
figuration are given as:

v(X, t) = ẋ(X, t) =
dx
dt

(X, t) = u̇(X, t),

a(X, t) = ẍ(X, t) =
d2x
dt2 (X, t) = ü(X, t).

(6)

As stress measure in the material configuration we use
the second Piola-Kirchoff stress tensor S, which is related to
the true Cauchy stress σ in the current configuration by the
following equation:

S = JF−1
σF−T . (7)

In hyperelasticity the constitutive relation of strain and stress
is defined by a strain energy function ψ:

S =
dψ

dE
= 2

dψ

dC
. (8)

In this work we refer to two particular choices of strain en-
ergy functions. For the linear St. Venant-Kirchhoff material
law, which is also used in linear elasticity, it is

ψ(E) =
λ

2
tr(E)2 +µ tr(E2),

S = λ tr(E)I+2µ E,
(9)

and for the nonlinear Neo-Hookean material it holds

ψ(C) =
λ

2
(lnJ)2−µ lnJ+

µ

2
(tr(C)−3) ,

S = λ lnJ C−1 +µ (I−C−1).

(10)

For linearization within the later described solution process
we are going to need the constitutive 4th order tensors

CSE =
dS
dE

= 2
dS
dC

(11)

for both material laws. For the St. Venant-Kirchhoff material
it is

CSE
i jkl = λ δi jδkl +µ

(
δikδ jl +δilδk j

)
, (12)

and for the Neo-Hookean material

CSE
i jkl = λ C−1

i j C−1
kl +(µ−λ lnJ)

(
C−1

ik C−1
jl +C−1

il C−1
k j

)
.

(13)

2.2 Strong and weak form of governing equations

With the kinematic quantities introduced in the preceding
Section 2.1, we can follow [5, 6] in formulating the local
balance differential equations. In the strong form these must
hold for all material points X ∈Ω and times t ∈ [0,T ].

The conservation of mass in the Lagrangian configura-
tion reads as

ρJ = ρ0, (14)

where ρ0 is the initial and ρ the current mass density. Fur-
thermore we need the conservation of linear momentum, in-
volving volume forces ρ0b:

div F S+ρ0b = ρ0ü. (15)

Local balance of angular momentum yields the symmetry of
the second Piola-Kirchhoff stress tensor

S = ST , (16)

and the first law of thermodynamics, i.e. conservation of en-
ergy, reads:

ρ0u̇ = S · Ė−div Q+ρ0R, (17)

where u is the specific internal energy, R the heat source and
Q heat flux.

In addition to these equilibrium equations, we need bound-
ary conditions for displacements and tractions:

u = ud on Γu, ∀t ∈ [0,T ],

F S N = t on Γn, ∀t ∈ [0,T ],
(18)

where Γu,Γn ⊂ ∂Ω are the parts of the boundary of the do-
main Ω where prescribed displacements ū and t̄ tractions
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act, and N is the outer surface normal of a boundary point.
For the time-dependent dynamic problem we also need the
initial conditions of displacements and velocities

u(X,0) = û, v(X,0) = v̂ ∀X ∈Ω . (19)

In order to find an approximate solution of the exact dis-
placements u, we only demand that the equilibrium equa-
tions are fulfilled in a weak sense. Thus the residual remain-
ing in (15) is multiplied with a test function δu, the so-
called virtual displacement fulfilling the boundary condition
δu = 0 on Γu, and then integrated over the domain Ω . After
a few manipulations this principle of virtual work yields the
weak form of our problem:∫

Ω

ρ0 δuT ü dX+
∫

Ω

δE ·S dX

=
∫

Ω

ρ0 δuT b dX+
∫

Γn

δuT t dA.
(20)

2.3 Isogeometric finite element discretization

For the spatial discretization and solution of the virtual work
equation (20) we use the isogeometric finite element method,
which was introduced in [24]. In addition to the isopara-
metric concept [5, 14], which means that the same function
spaces are used for the mathematical description of geome-
try X and displacement solution u in a Galerkin formulation,
the idea behind isogeometric analysis is to employ the same
class of function in the numerical method as already used to
define the geometry for example in a CAD program, i.e. B-
Splines and NURBS. For a detailed introduction into spline
functions we refer to [25] and for a collection of results and
applications of isogeometric analysis to [29].

Starting point for the numerical solution of (20) is a
trivariate NURBS volume parameterization of material co-
ordinates, i.e. the geometry function mapping a parameter
domain Ω0 ⊂R3 onto the material coordinates X∈Ω ⊂R3:

X(ξ ) =
n

∑
i=1

N p
i (ξ )Ci , ξ ∈Ω0. (21)

Here n, p, i should be understood as 3-dimensional multi-
indices n = (n1,n2,n3), p = (p1, p2, p3) and i = (i1, i2, i3),
giving the number, degree and index of trivariate NURBS
functions N p

i (ξ ) with parameters ξ = (ξ1,ξ2,ξ3), and Ci ∈
R3 are the control points of the NURBS volume. The param-
eter domain Ω0 is also a tensor product of 1-dimensional in-
tervals for each parameter direction, given by knot vectors.
Elements in the parameter domain are defined as knot in-
tervals, with the total number of elements denoted by ` =

(`1, `2, `3).

Following the isoparametric concept, displacements, ve-
locities and test functions are discretized using the push-
forward of NURBS functions onto the material domain:

uh(X, t) =
n

∑
i=1

N̂ p
i (X)di(t) =

n

∑
i=1

N p
i (ξ (X))di(t)

vh(X, t) =
n

∑
i=1

N̂ p
i (X) ḋi(t) =

n

∑
i=1

N p
i (ξ (X)) ḋi(t),

δuh(X) =
n

∑
i=1

N̂ p
i (X)δdi =

n

∑
i=1

N p
i (ξ (X))δdi.

(22)

Here di(t) ∈ R3 express the displacements of control points
Xi and ξ (X) is the inverse of the geometry mapping (21).

Then the kinematic quantities described in Section 2.1
can be derived in dependence of the discretized displace-
ments from (22). For the deformation gradient this means:

F(X, t) = I+∇uh(X, t) = I+
n

∑
i=1

di(t)∇N̂ p
i (X)

= I+
n

∑
i=1

di(t)
dN p

i
dξ

(ξ (X)) ·
(

dX
dξ

)−1

.

(23)

Cauchy-Green and Green-Lagrange strain tensors can the be
computed from F and the 2nd Piola-Kirchhoff stress be eval-
uated. Switching to the Voigt vector notation for matrices E
and S (see [5])

E = (E11, E22, E33, 2E12, 2E23, 2E13)
T ,

S = (S11, S22, S33, S12, S23, S13)
T ,

CSE =
dS
dE

,

(24)

the virtual Green-Lagrange strain tensor reads

δEi = Bi(X)δdi, (25)

where the matrix Bi ∈ R6×3 is

Bi(X) =̂
1
2
(
∇N̂ p

i (X)T F(X)+F(X)T
∇N̂ p

i (X)
)
. (26)

Then the entries of the internal force vector

ri =
`

∑
e=1

{∫
Ωe

BT
i S dX

}
, (27)

external force vector

fi =
`

∑
e=1

{∫
Ωe

ρ0 N̂ p
i b dX+

∫
Γn,`

N̂ p
i t dA

}
, (28)

and mass matrix

Mi j =
`

∑
e=1

{
I
∫

Ωe

ρ0 N̂ p
i N̂ p

j dX
}
, (29)



Nonlinear frequency response analysis of structural vibrations 5

can be assembled element-wise on element domains Ωe, just
as in standard finite element methods [5, 14], and finally the
discretized equation of motion

M d̈(t)+ r(d(t)) = f(t) (30)

needs to be solved for the unknown vector of control point
displacements d.

For the solution of (30) we will also need the tangential
stiffness matrix

KT =
dr
dd

= Kgeo +Kmat , (31)

with the assembled geometric tangent matrix:

Kgeo
i j =

`

∑
e=1

{
I
∫

Ωe

∇N̂ p T
i S ∇N̂ p

j dX
}
, (32)

and material tangent matrix:

Kmat
i j =

`

∑
e=1

{∫
Ωe

BT
i CSE B j dX

}
. (33)

3 Nonlinear analysis of structural vibrations

Having introduced the problem formulation of nonlinear struc-
tural dynamics and the spatial discretization using isogeo-
metric finite elements in the previous Section 2, we now tar-
get the topic of frequency analysis. Therefore we start with
a brief review of methods for linear frequency analysis, i.e.
modal analysis of eigenfrequencies and eigenforms, and di-
rect frequency response to harmonic excitations in Section
3.1. Then we introduce the method of harmonic balance,
which allows to compute nonlinear steady-state frequency
response to periodic excitations, in Section 3.2.

3.1 Linear frequency analysis

In linear elasticity strains are restricted to small deformation
theory, compare (5),

e(X, t) =
1
2
(
∇uT +∇u

)
, (34)

and for the constitutive relation the linear St. Venant-Kirchhoff
law is used, see (9),

σ = λ tr(e)I+2µ e. (35)

The (isogeometric) finite element discretization analo-
gous to Section 2.3 leads to the following semi-discretized,
time-dependent problem of linear elasto-dynamics [14, 29]:

M d̈(t)+K d(t) = f(t) ∀t ∈ [0,T ], (36)

Fig. 2: First six eigenmodes of the so-called TERRIFIC
demonstrator, computed with IGA from a multi-patch model
with 15 blocks

where M and K are the n× n mass and linear stiffness ma-
trix, d is the vector of control point displacements and f is
the vector of external forces. Furthermore we have periodic-
ity conditions for the displacement vectors:

d(0) = d(T ), v(0) = v(T ). (37)

3.1.1 Modal analysis of eigenfrequencies

From (36) one can derive the well-known eigenvalue prob-
lem

−ω
2
k M φ k +K φ k = 0, k = 1, . . . ,n, (38)

for the n linear natural frequencies ωk and corresponding
eigenmodes φ k [14, 29].

In [30] the properties of isogeometric finite element dis-
cretizations in the context of linear eigenvalue problems such
as (38) were examined already. For one-dimensional rods
and beams, it has been shown analytically and numerically
that spline-based finite elements are more accurate than La-
grangian finite elements. While C0-continuous Lagrangian
FE of higher degrees p > 1 exhibit optical and acoustical
branches in the frequency spectrum with huge errors and no
p-convergence in higher eigenfrequencies, Cp−1-continuous
spline-based FE shows high accuracy and p-convergence
over the whole spectrum. These results have also been nu-
merically verified in [30] for 2- and 3-dimensional linear
eigenvalue problems and thus motivate the use of isogeo-
metric analysis also for nonlinear vibration problems. Fur-
thermore the dependency of convergence of IGA on the type
of parameterization - linear or uniform - was investigated
in [35].

An example for modal analysis using isogeometric finite
elements is shown in Figure 2 with the TERRIFIC demon-
strator part [36], which consists of 15 NURBS patches. This
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application is going to be addressed in more detail in Section
5.3.

3.1.2 Direct frequency response

Another means of linear frequency analysis, which is also
available in most FEA software, is the so-called direct fre-
quency response (DFR) method. Given a harmonic external
loading of the form

f(t) = fc cosωt + fs sinωt, (39)

the steady-state response of the structure is assumed as

d(t) = qc cosωt +qs sinωt. (40)

A transformation of (36), including an additional damping
term C ḋ(t), onto the Fourier domain then yields a linear
system of equations for the unknown cosine and sine ampli-
tudes of the displacement qc and qc:

−ω
2 M qc +ω C qs +K qc = fc,

−ω
2 M qs−ω C qc +K qs = fs.

(41)

3.2 Nonlinear frequency response: the Harmonic Balance
Method

While the solution of eigenvalue problems and direct fre-
quency response are two standard methods in engineering
practice for the frequency and vibration analysis of struc-
tures, nonlinear vibration analysis is a much harder task which
is lacking efficient numerical methods. Steady-state vibra-
tion response of a structure subject to nonlinearities such
as large deformations and hyperelastic material models (see
Section 2.1) is typically solved by time-integration of finite
element models, also in the IGA context [5, 29].

A more elegant approach is the Harmonic Balance Method
(HBM) [1–3], which has been employed so far mainly for
FE-discretizations of beam and shell models only [9–13].
Furthermore we have already investigated the HBM in con-
junction with IGA for nonlinear Euler-Bernoulli beams [4].
We could show that IGA is more accurate than standard
or p-FEM in this setting as well, due to the higher Cp−1-
continuity.

Here we apply the method to our isogeometric finite ele-
ment discretization of large deformation hyperelasticity (see
Section 2.3). Therefore we start from the equation of motion
(30) with periodicity conditions:

M d̈(t)+ r(d, t) = f(t) ∀t ∈ [0,T ],

d(0) = d(T ), v(0) = v(T ).
(42)

Now we consider only periodic external excitations of
the structure, with frequency ω (period T = 2π/ω) and a
finite number m∗ of higher harmonics:

f(ω, t) =
1
2

f0 +
m∗

∑
k=1

cos(kωt) fk + sin(kωt) f2m∗−k+1. (43)

We expect the response to periodic excitation to be ω-periodic
as well and therefore express the displacement coefficients
d(t) of the spatial discretization uh(X, t) (22) (and conse-
quently also the velocities and accelerations) as a truncated
Fourier expansion with m≥m∗ harmonic terms of frequency
ω and amplitudes q = (q0, . . . ,q2m):

d(q,ω, t) =
1
2

q0 +
m

∑
k=1

cos(kωt)qk + sin(kωt)qk̄,

ḋ(q,ω, t) =
m

∑
k=1
−kω sin(kωt)qk + kω cos(kωt)qk̄,

d̈(q,ω, t) =
m

∑
k=1
−k2

ω
2 cos(kωt)qk− k2

ω
2 sin(kωt)qk̄,

(44)

with the abbreviation k̄ = 2m− k+1.
When we substitute the ansatz from (44) into (42), we

get a residual vector:

ε(q,ω, t) = M d̈(q,ω, t)+ r(q,ω, t)− f(ω, t). (45)

In the next step we apply the Ritz procedure by projecting
the residual ε onto the temporal basis functions, in order
to obtain a Fourier expansion of the residual with 2m+ 1
coefficient vectors that have to be evaluated to 0 (balance of
the harmonics):

ε j(q,ω) =
2
T

∫ T

0
ε(q,ω, t)cos jωt dt !

= 0, j = 0, . . . ,m ,

ε j̄(q,ω) =
2
T

∫ T

0
ε(q,ω, t)sin jωt dt !

= 0, j = 1, . . . ,m.

(46)

The nonlinear system of (2m+1) ·n equations given by (46)
needs to be solved in order to determine the amplitudes q
for given ω .

Note that the existence and accuracy of a solution may
highly depend on the number of harmonics m, since non-
linear effects, such as internal resonance and coupling of
modes, typically cause response in higher harmonics m>m∗

than the highest excited harmonic.
For computational purposes the above-mentioned equa-

tions may be transformed onto a non-dimensional time τ =

ωt. Then the domain of integrals in (46) becomes [0,2π]

and for computation we can use discrete Fourier resp. Hart-
ley transform (DFT, DHT), where the residual ε(q,ω,τ) has
to be sampled at 2m+ 1 equidistant times τ j =

2π j
2m+1 , j =

0, . . . ,2m.
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Furthermore, for solving (46) with a Newton’s method
we need the Jacobians of residual coefficients ε j with re-
spect to amplitudes qk, k = 0, . . . ,2m:

dε j

dqk
(q,ω) =

2
T

∫ T

0

dε

dqk
(q,ω, t)cos jωt dt, j = 0, . . . ,m ,

dε j̄

dqk
(q,ω) =

2
T

∫ T

0

dε

dqk
(q,ω, t)sin jωt dt, j = 1, . . . ,m.

(47)

The integrals are again evaluated by discrete Fourier trans-
form and thereby we also need the Jacobians of the residual
ε with respect to amplitudes qk:

dε

dqk
(q,ω, t) =−k2

ω
2 coskωt M

+ coskωt KT (q,ω, t), k = 0, . . . ,m ,

dε

dqk̄
(q,ω, t) =−k2

ω
2 sinkωt M

+ sinkωt KT (q,ω, t), k = 1, . . . ,m ,

(48)

with KT = dr
dd from (31).

Response curves (RC) are a wide-spread means of visu-
alizing the frequency response of steady-state vibrating sys-
tems, also for linear DFR. Typically, the total amplitude Ak
and phase φk of one or more harmonics k are evaluated at a
specific point on the structure for fixed ω and plotted over
a certain range of frequency. They can be computed as fol-
lows:

Ak =
√

q2
k +q2

k̄ , φk = arctan
qk̄
qk

, (49)

qk cos(kωt)+qk̄ sin(kωt) = Ak cos(kωt +φk). (50)

The simplest method for generating response curves and
functions is simply to start from a fixed ω , compute the re-
sponse via HBM or DFR, evaluate amplitude and phase at
the evaluation point, and then increment or decrease the fre-
quency step by step. However, nonlinear problems in fre-
quency analysis typically exhibit a complex behaviour with
several solution paths, bifurcations and turning points, see
for example [4, 10, 11]. Therefore so-called homotopy or
continuation methods are needed instead. But since the fo-
cus of this work is lain on the reduction method introduced
in Section 4, such a method was not implemented for the
numerical examples presented in Section 5

4 Model order reduction for nonlinear vibration
analysis

As mentioned in Section 3.2, the harmonic balance method
for nonlinear vibration analysis requires the solution of a
linear system of equations of size n ·(2m+1) in each step of
a Newton iteration, where n is the number of spatial DOFs

and m the number of harmonics in the Fourier expansion of
each DOF. This system is not only (2m+ 1)-times bigger
than the underlying static system (i.e. the tangent stiffness
matrix KT ), but also much more densely populated. Each
row of dε j

dqk
also has (2m+1)-times the number of non-zero

entries of the corresponding row of KT and is not symmetric
anymore.

This is a severe draw-back regarding the solution process
of the system using sparse linear solvers, which are designed
for the solution of large systems with only few non-zero en-
tries per row. While sampling time for Fourier transform, i.e.
(2m+ 1)-times assembly of force vector and tangent stiff-
ness, increases linearly with m, and time for Fourier trans-
form itself by m logm, solution time of the system increases
more rapidly. For complex engineering structures with hun-
dreds of thousands or even millions of DOFs in the finite
element model, a harmonic balance analysis becomes even
impossible.

Thus we are looking for a suitable model order reduction
method (MOR) in order to decrease the computational effort
for solving the linear system within harmonic balance and
allowing a nonlinear frequency analysis even for large-scale
applications.

4.1 Overview of model order reduction methods

Having identified the need for model order reduction, we are
giving a brief review of different kinds of model reduction
methods with applications in nonlinear structural mechanics
and dynamics [5, 14, 15].

There is a wide range of projection based reduction meth-
ods, where the physical coordinate vector d ∈Rn can be ex-
pressed by a linear transformation of reduced coordinates
d̂ ∈ Rr:

d = Φ d̂. (51)

Φ ∈ Rn×r is the transformation matrix, with rank(Φ) = r ≤
n. In case of r = n (51) is a basis transformation, but the in-
tention is to chose r� n and project onto a smaller subspace
of the original solution space.

The most common projection method is modal reduction
or truncation [14, 15], where the transformation matrix Φ is
composed from a subset of linear eigenvectors, see (38). It is
widely used in linear structural dynamics, but there is only
a limited applicability in nonlinear analysis (see also later
examples in Section 5.1).

Tangent modes [21, 22] are the eigenmodes one obtains
from the solution of an updated eigenvalue problem with
the tangent stiffness KT for the current deformation state.
In nonlinear time-integration an updated modal basis can be
determined from these tangent modes in every time step, or
after a suitable number of time steps. In [21] also a method
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for direct update of eigenvectors in each time step is de-
scribed. But as we compute the amplitudes for one whole
period of vibration in harmonic balance, there is no specific
current state of deformation in our setting and these methods
seem not very applicable.

A nonlinear counterpart of linear eigenmodes are nonlin-
ear normal modes (NNMs), which have shown good results
in nonlinear frequency analysis in terms of self-excited vi-
brations before [16,37–39]. However, the computational ef-
fort of numerically determining the NNMs seems very high,
since for example one method is solving an autonomous har-
monic balance problem for the full system for each mode.

Another means of generating a projection basis are Ritz
vectors [21,22]. Ritz vectors are developed from load or dis-
placement of a current state; for nonlinear analysis basis up-
dates and derivatives may also be included, providing a good
approximation of exact solutions [21]. However, again this
method relies on a fixed current state of deformation and
load and seems not suitable for application in harmonic bal-
ance.

For Proper Orthogonal Decomposition (POD) a set of
sample displacement vectors has to be generated as part of
preprocessing, from which an optimal basis is created [21,
40, 41]. The method leads to good results in structural time
integration, but sampling requires a priori knowledge of loads.
Since unexpected resonances and states of deformation are
to be found in nonlinear vibration analysis with HBM, the
POD method might not be suitable for those.

Our choice of reduction method is modal reduction resp.
truncation (MR) with modal derivatives [17–22], which we
present in detail in the next Section 4.2. Modal derivatives
(MD) are a second order enhancement of the modal basis,
which accounts for quadratic terms as they appear in large
deformation theory and Green-Lagrange strains. The modal
derivatives can be computed from the linear stiffness matrix
and eigenvectors as part of preprocessing and do not require
basis updates during the computation.

4.2 Modal reduction with modal derivatives

As it is our method of choice for the use in nonlinear vi-
bration analysis, we give an introduction into the concept of
modal derivatives and their computation, using references
[17, 18, 20]:

In a linear modal truncation the displacements are ex-
pressed in terms of eigenmodes of the linear problem φ i and
modal coordinates d̂i. Since the tangent stiffness matrix de-
pends on displacements in a nonlinear setting, also the (tan-
gent) modes depend on displacements:

d =
n

∑
i=1

φ i(d) d̂i. (52)

Now d is developed as second-order Taylor series around the
initial configuration of zero displacements d = 0 (d̂ = 0):

d = 0+
n

∑
i=1

(
∂d
∂ d̂i

(d̂ = 0) d̂i +
n

∑
j=1

∂ 2d
∂ d̂i∂ d̂ j

(d̂ = 0)
d̂id̂ j

2

)

=
n

∑
i=1

(
φ i(0) d̂i +

n

∑
j=1

(
∂φ j

∂ d̂i
(0)+

∂φ i

∂ d̂ j
(0)

)
d̂id̂ j

2

)
.

(53)

For computing the modal derivatives
∂φ j

∂ d̂i
one needs to

differentiate the eigenvalue problem (38) with K = KT (0)
w.r.t. to the modal coordinates:

∂

∂ d̂i

[(
K−ω

2
j M
)

φ j

]
=

(
K−ω

2
j M
) ∂φ j

∂ d̂i
+

(
∂K
∂ d̂i
−

∂ω2
j

∂ d̂i
M

)
φ j = 0.

(54)

In [18] three different approaches for the solution of (54) are
presented: analytical, analytical excluding inertia effects and
purely numerical using finite differences of the re-computed
tangent eigenvalue problem. We have implemented the en-
hanced modal basis approach using modal derivatives with
the “analytical approach excluding mass consideration”, which
leads to the solution of the following linear system for

∂φ j

∂ d̂i
:

∂φ j

∂ d̂i
=−K−1 ∂K

∂ d̂i
φ j, (55)

with a finite difference approximation of the derivative of
the tangent stiffness matrix

∂K
∂ d̂i
' KT (∆ d̂i φ i)−K

∆ d̂i
. (56)

Thus we can compute approximations symmetric modal deriva-
tives

∂φ j

∂ d̂i
, which we also orthonormalize. An extended re-

duction basis with rd eigenmodes and the corresponding modal
derivatives is:

Φ =

(
φ 1, . . . ,φ rd

,
∂φ 1

∂ d̂1
,

∂φ 1

∂ d̂2
, . . . ,

∂φ 1

∂ d̂rd

, . . . ,
∂φ rd

∂ d̂rd

)
, (57)

which then has basis length r = rd + rd(rd + 1)/2 and the
linear projection for reduction is:

d = Φ d̂ =
rd

∑
i=1

φ i d̂i +
rd

∑
i=1

rd

∑
j=i

∂φ i

∂ d̂ j
d̂i j. (58)

Note that from the quadratic Taylor expansion in (53)
with dependent quadratic coefficients d̂id̂ j we have gener-
ated a reduced linear expansion in (58) with independent
coefficients d̂i j.
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Currently there are no theoretical error estimates avail-
able for the accuracy of reduction with the modal derivative
approach and the number and choice of modes and deriva-
tives to be included in the basis (57) has to be manually se-
lected. However, the numerical results presented in Section
5, especially the static convergence study in Section 5.1, in-
dicate convergence with respect to the number of basis vec-
tors used and acceptable accuracy already for a small num-
ber of modes and derivatives.

Remark that the computational effort for computing all
rd(rd + 1)/2 symmetric modal derivatives is mainly com-
puting the rd linear eigenvectors φ j, assembly of rd-times a
tangent stiffness matrix in (56) and then solving the linear
system (55) rd(rd + 1)/2-times. If the problem size is not
too big and one can solve (55) by LU-decomposition of K,
the computation becomes very efficient.

4.3 Application of reduction to nonlinear vibration analysis

Here we describe the application of the modal projection
method with eigenmodes and modal derivatives, as intro-
duced in the preceding Section 4.2, to the harmonic balance
method, see Section 3.2.

The displacement vector d in the equation of motion of
harmonic balance (42) is projected using modal coordinates
d̂:

d(t) = Φ d̂(t), (59)

where Φ is the projection matrix with a selection of r� n
linear eigenmodes φ i and corresponding modal derivatives
∂φ j

∂ d̂i
as columns, see (58).
Now the equation of motion (42) is transformed onto

modal coordinates by left-multiplication with Φ
T :

Φ
T MΦ

¨̂d(t)+Φ
T r(d(t)) = Φ

T f(t). (60)

This equation may be re-written using the notations

M̂ = Φ
T MΦ , r̂ = Φ

T r, f̂ = Φ
T f, (61)

as

M̂ ¨̂d(t)+ r̂(d(t)) = f̂(t). (62)

The spatial discretization of the nonlinear equation system
has been reduced from a sparse n× n to a dense r× r one,
but note that the nonlinear term r̂(d(t)) (and also the corre-
sponding tangent K̂T (d(t)) = Φ

T KT (d(t))Φ) still depend
on the physical displacement vector d and have to be as-
sembled in the usual way without any speed-up. Therefore
dimension reduction methods such as Discrete Empirical In-
terpolation [42] might be applied in the future.

The further procedure of applying the harmonic balance
method is equivalent to the steps described in Section 3.2:

Compute reduction basis (pre-processing):

Assemble M, K
Solve −ω2

j Mφ j +Kφ j = 0, j = 1, . . . ,r

For i = 1, . . . ,r:

Assemble KT (∆ d̂i φ i)

Compute ∂K
∂ d̂i
' KT (∆ d̂i φ i)−K

∆ d̂i

For j = 1, . . . ,r:

Solve
∂φ j

∂ d̂i
=−K−1 ∂K

∂ d̂i
φ j

Basis Φ = (φ 1, . . . ,φ rd
,

∂φ1
∂ d̂1

, . . . ,
∂φ1
∂ d̂rd

, . . . ,
∂φ rd
∂ d̂rd

)

Frequency response for ω:

While ‖ε̂‖> 0 (Newton iteration):

For j = 0, . . . ,2m (sampling):

Displacement d(τ j) = Φ
( 1

2 q̂0 +∑
m
k=1 cos(kτ j) q̂k

+sin(kτ j) q̂k̄)

Assemble r(τ j), KT (τ j)

Evaluate ε(τ j), dε

dqk
(τ j)

Reduction ε̂(τ j) = Φ
T

ε(τ j) ,
dε̂

dq̂k
(τ j) = Φ

T dε

dqk
(τ j)Φ

Fourier transform ε̂(τ j)→ ε̂ j ,
dε̂

dq̂k
(τ j)→

dε̂ j
dq̂k

Solve ∆ q̂ =−( dε̂

dq̂ )
−1 ε̂

Update q̂← q̂+∆ q̂

Fig. 3: Algorithm for nonlinear frequency analysis with
modal derivative reduction

Fourier expansion of modal coordinates d̂ using amplitudes
q̂, substitution into (62) for a residual vector ε̂ , Fourier trans-
form of the residual and its Jacobian, and solution of the
equation system for q̂, which has now size r ·(2m+1). Phys-
ical displacements can then be recovered within each sam-
pling or Newton step using d(t) = Φ d̂(t).

A schematic overview of the algorithm for nonlinear fre-
quency analysis with modal derivative reduction is presented
in Figure 3.

5 Computational applications and examples

5.1 Modal reduction in 3D nonlinear elasto-statics

Before applying the modal reduction technique from Sec-
tion 4.2 to nonlinear vibration analysis, we want to study the
accuracy of modal reduction with modal derivatives for non-
linear large deformation hyperelasticity in a static 3-dimensional
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Fig. 4 Geometry of the 3D object
(gray), linear displacement (blue), non-
linear displacement (red), nonlinear dis-
placement with modal reduction r = 50
(green).

case, i.e. solving

Φ
T r(d) = Φ

T f,

d = Φ d̂, Φ ∈ Rn×r.
(63)

We use a 3D geometry with no symmetries subject to
large deformations and linear St. Venant-Kirchhoff material
law (9). One boundary face of the object is fixed by cou-
pled Dirichlet boundary conditions and then eigenvalues and
eigenvectors are computed for setting up the modal matrix
Φ with first r eigenmodes as columns. For reduction with
modal derivatives we compute the modal derivative basis
with rd eigenmodes and corresponding modal derivatives.
For static computations a Neumann boundary condition is
applied to the opposite face with force contributions in all
3 dimensions, forcing a large deformation up to 100% of
the object’s dimensions. The geometry of the object together
with results of subsequent computations is visualized in Fig-
ure 4.

For a quite coarse isogeometric discretization with p =

(2,2,2), ` = (2,2,4), n = (4,4,6), N = 288, we compare
the accuracy of modal reduction (MR) and modal reduc-
tion with derivatives (MD) with the full, unreduced nonlin-
ear computation. As criteria we use the relative errors of x-,
y- and z-displacement, evaluated on the center point of the
surface where the load is applied, e.g. |ufull

x −uMD
x |/|ufull

x |,
as well as relative errors in L2- and H1-norms, e.g. ‖ufull−
uMD‖L2/‖ufull‖L2 .

In Figure 5 we compare the relative L2- and H1-errors
of the full and reduced solutions for the linear case with MR
and the nonlinear deformation with linear material case with

MR and MD. While no significant improvement of accuracy
with increasing basis length (number of modes) is noticeable
for MR in the nonlinear case, MD provides a similar con-
vergence behaviour as MR in the linear case. Note that for
r = 240 we are already considering the full set of displace-
ment modes and for r = N the transformation is bijective
and thus must reproduce the results of the full system.

Furthermore we have also investigated the behaviour of
modal reduction and modal derivatives for different load fac-
tors. Figure 6 shows the displacement at the evaluation point
for load factor 1 to 1000 (100 corresponds to the load level
of previous results). While there is no visible deviation from
full results for MD, MR shows large errors.

In Figure 7 the relative errors of the displacement at eval-
uation point and relative L2- and H1-norm errors are shown
over increasing load factor. While errors for MD are small
and roughly stay constant up to very large load factors and
thus displacements, relative errors for MR grow fast and to
a very high, unreliable level.

Figures 8 and 9 show the results when a material nonlin-
earity is also included using Neo-Hookean (10) instead of
St. Venant-Kirchhoff material with the same material con-
stants. First of all, comparing Figures 6 and 8 we can see a
substantial difference of displacements for high load factors
between the two different constitutive laws. However, the
modal derivative reduction method performs very well also
in the case of geometric and material nonlinearity, i.e. Neo-
Hookean material. In fact, Figure 9 shows that the accuracy
of the MD-reduced versus the full problem is virtually the
same as for the linear material.
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Fig. 6 Displacement at
evaluation point for full
computation (full), modal
reduction with 50 modes
(MR r = 50) and modal
derivatives for 10 modes
(MD rd = 10) for increasing
load factor for linear St.
Venant-Kirchhoff material
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50) and MD (rd = 10) w.r.t
full computation for increas-
ing load factor for linear St.
Venant-Kirchhoff material
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Fig. 8 Displacement at
evaluation point for full
computation (full), modal
reduction with 50 modes
(MR r = 50) and modal
derivatives for 10 modes
(MD rd = 10) for increasing
load factor for nonlinear
Neo-Hookean material
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Fig. 9 Relative error of dis-
placement amplitudes, L2-
and H1-norm of MR (r =
50) and MD (rd = 10) w.r.t
full computation for increas-
ing load factor for nonlinear
Neo-Hookean material

With this numerical study we have examined the approx-
imation properties of our modal derivative reduction method
for large deformations in a static setting. We can conclude
that modal reduction is unsuitable for reduction of large de-
formation problems, while modal reduction with modal deriva-
tives provides a high accuracy in the nonlinear static prob-
lem setting and opens a perspective for the use in nonlinear
vibration analysis.

5.2 Large amplitude vibration of a thick cylinder

In Mathisen et al. a thick cylinder was already chosen as
an application for the use of isogeometric analysis in com-
pressible and incompressible large deformation hyperelas-
ticity [34]. For nonlinear vibration analysis we pick up this
example with a geometry that can be exactly represented us-
ing a NURBS volume and using the Neo-Hookean material
law (10). The dimensions of one eigtht of the cylinder, ma-

terial parameters and loads can be found in Figure 10. The
surface Neumann loads are periodic.

For the isogeometric discretization we chose p=(3,3,3),
` = (4,4,1), n = (7,7,4), N = 588, and therefore compute
the first linear eigenfrequency as f h

1 = 1581.9 Hz.
Now we perform a harmonic balance frequency response

analysis with m = 3 (HBM) near the first eigenfrequency
within the frequency range of 0.85 < f/ f h

1 < 1.15 and com-
pare the results with linear direct frequency response (DFR).
A snapshot of the deformed vibrating cylinder for f/ f h

1 =

0.95 can be seen in Figure 11. Although very large deforma-
tions occur, the isogeometric harmonic balance still shows a
good convergence behaviour with 4-5 Newton iterations per
frequency step.

In Figure 12 the z-amplitudes evaluated at the center
point of the front surface of the cylinder are plotted (E1 in
Figure 10). Even with our simple frequency-stepping method
we can find a typical nonlinear resonance behaviour with
two branches. For the left one we have no more conver-
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l = 0.15 m, ν = 0.33,

r = 0.08 m, ρ = 2800 kg/m3,

t = 0.02 m, p1 =−2.0 ·107 cosωt N/m2,

E = 74.0 GPa, p2 = 2.0 ·107 cos2ωt N/m2.

Fig. 10: Geometry, material parameters and loads of the vi-
brating thick cylinder

Fig. 11: Snapshot of deformation of thick cylinder at τ = 0
for vibration with f/ f h

1 = 0.95, colored by von Mises stress.

gence at f/ f h
1 = 0.97, probably due to a turning point that

we can not detected with simple frequency increments. Fur-
ther away from the resonance at 1.0, where a1 from linear
DFR tends to ∞, amplitudes of DFR and HBM correspond
quite well, but then resonance behaviour becomes different
and we can also detect strong contributions of other harmon-
ics a0, a2 and a3.

For a comparison of reduction methods with the “ex-
act” HBM solutions, we have changed the refinement of
isogeometric parameterization to p = (2,2,2), `= (4,4,1),
n = (6,6,3), N = 324 and the evaluation point to the top
right corner of the front surface (E2 in Figure 10).

We compare the frequency response of the cylinder at
f/ f h

1 ≈ 1.0 for full harmonic balance (HBM), modal reduc-
tion (MR) with r = 50 and modal derivatives (MD) with
rd = 10 (r = 65) in Figure 13. For modal reduction we have

Fig. 14: Geometry of the “TERRIFIC Demonstrator” in
CAD system.

Fig. 15: IGA-suitable multi-patch volume parameterization
of the “TERRIFIC Demonstrator”.

no meaningful reproduction of the results whatsoever, while
the extended basis with modal derivatives reproduces the
amplitudes of the full harmonic balance with high accuracy
up to a level where strong resonance occurs. Convergence of
the Newton’s method is also not affected.

This shows that the MD-reduction method is very well
able to reproduce the results of the full computation of a
harmonic balance nonlinear frequency response analysis.

5.3 Large-scale application: the TERRIFIC Demonstrator

The so-called “TERRIFIC part” is a structure which was in-
troduced within the European project “TERRIFIC” [36] as a
demonstrator for the isogeometric CAE workflow from de-
sign, over analysis to manufacturing. It was designed in a
CAD system (Figure 14), an IGA-suitable NURBS volume
parameterization was generated for mechanical simulation
(Figure 15), and other models for dip-paint simulation and
computer-aided manufacturing were derived. Here we want
to use it as a more realistic application for our nonlinear
frequency analysis framework.

The isogeometric volume parameterization consists of
15 patches of quadratic B-Spline volumes, with a total of
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Fig. 12 Frequency response
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Fig. 13 Frequency response
curves of z-amplitudes of vibrat-
ing cylinder at top right point
of front surface E2 for m = 3.
Comparison of full HBM and
HBM with MR and MD

6,474 control points and 19,422 DOFs. Including interface
constraints on the patches, the isogeometric finite element
discretization of the model has 22,914 DOFs.

The material parameters of the part, using the St. Venant-
Kirchoff material law, are then chosen as follows:

E = 74.0 GPa, ν = 0.33, ρ = 2800 kg/m3. (64)

As boundary conditions we take a clamping of the right hole
in Figure 15 by a zero Dirichlet condition and the periodic
excitation acts as a surface traction on the left hole (Neu-
mann boundary condition):

u = 0 on Γu,

t = (60.0, −42.0, 0.0)T ·106 cosωt N/m2 on Γn.
(65)

With this spatial discretization, material parameters and
boundary conditions we start the analysis by computing the
first four eigenfrequencies ( f = 2π/ω) of the part:

f h
1 = 223.66 Hz, f h

2 = 358.05 Hz,

f h
3 = 740.78 Hz, f h

4 = 1233.54 Hz.
(66)

We are interested in carrying out a frequency response
analysis of the part around the first two eigenfrequencies, i.e.
in the range of 150 Hz < f < 450 Hz. The surface tractions
specified in (65) cause a large deformation of the part and
thus we expect a significant difference between the results
of a linear DFR and the nonlinear HBM.

Taking a Fourier series length of m = 3, the problem size
of harmonic balance grows in this case to a total of 160,398
DOFs and due to its low sparsity it is not solvable on a per-
sonal computer. Therefore we need to apply the reduction
proposed in Section 4 to make the problem resp. the linear
system solvable.

As part of pre-processing we compute the nonlinear static
displacement caused by a static load of the same magni-
tude. Then we compute the reduction basis with 5 resp. 10
linear eigenmodes and all corresponding modal derivatives,
and solve the reduced versions of the nonlinear static prob-
lem. A comparison of absolute values and relative errors
of displacements at an evaluation point on the very left of



Nonlinear frequency response analysis of structural vibrations 15

full rd = 5 rd = 10

abs. val. abs. val. rel. err. abs. val. rel. err.

ux 1.42E-02 1.33E-02 5.7% 1.41E-02 0.04%

uy 6.57E-03 5.85E-03 11.0% 6.59E-03 0.27%

uz 1.05E-03 2.69E-03 155.8% 1.05E-03 0.48%

L2 1.53E-04 1.45E-04 11.8% 1.53E-04 0.24%

H1 1.47E-03 1.40E-03 8.4% 1.47E-03 0.80%

Table 1: Nonlinear static analysis of “TERRIFIC Demon-
strator”. Comparison of full problem and reduction with
modal derivatives.

the structure (which we also take for plotting frequency re-
sponse curves), L2- and H1-norms in Table 1 reveals that
rd = 5 is not sufficient to capture the nonlinear displacement
behaviour, whereas rd = 10 provides a sufficient accuracy of
‖u f ull−urd‖L2/‖u f ull‖L2 < 1.0%.

We proceed with the harmonic balance frequency re-
sponse analysis in conjunction with modal derivative reduc-
tion with rd = 10, i.e. the first 10 linear eigenmodes and
the rd(rd + 1)/2 = 55 corresponding modal derivatives. In
Figures 16, 17, 18 we have plotted the frequency response
curves of x-, y- and z-amplitudes evaluated at evaluation
point E on the left outer boundary of the “TERRIFIC part”
for the frequency range 150 Hz < f < 450 Hz, together with
corresponding amplitudes computed from linear DFR. Around
f = 159.0 Hz = f h

2 /2 there is a remarkable sub-harmonic
resonance in a2, which cannot be determined with linear fre-
quency analysis. In the vicinity of the first eigenfrequency
f h
1 = 223.7 Hz we notice that the nonlinear response be-

haviour in z-amplitudes is different from the linear one ob-
tained from DFR, but with our simple frequency stepping
method we cannot follow complex solution paths here. The
resonance behaviour around f h

2 = 358.0 Hz is very strong
and we also have convergence problems with our method for
335 Hz < f < 355 Hz. There are strong contributions from
higher harmonics here, which lead to much more realistic
deformations as we discuss in more detail below. Rapidly
growing z-amplitudes at resonance indicate that there might
by turning points in the frequency response curves here,
which we could only follow using continuation methods.

Figure 19 shows the vibrating structure at a frequency
of f = 331.3 Hz, i.e. near the first eigenfrequency of f h

1 =

358.1 Hz, where resonance with very large deformation oc-
curs. Four snapshots are taken at times τ = 0, π/2, π, 3π/2,
displaying the deformed structure from the HBM-MD com-
putation colored by von Mises stress in Pa and as references
the deformed structure from DFR linear frequency analysis
and undeformed structure both in gray. It becomes obvious
that the nonlinear results lead to a much better prediction

of the small volume change of the structure and thus much
more realistic states of deformation. Furthermore it is in-
teresting that the bending of the structure is stronger in the
nonlinear case than in the linear case for τ = π . This can as
well be observed in Figure 20, where we have plotted the
x-, y- and z-displacement at the evaluation point over one
vibration period of τ ∈ [0,2π] for f = 331.3 Hz for both
HBM-MD and DFR.

Altogether, the results we present for the “TERRIFIC
Demonstrator” show that a modal reduction with modal deriva-
tives makes harmonic balance nonlinear frequency response
analysis feasible even for larger applications.

6 Summary and outlook

The aim of this paper is to present an advanced method for
nonlinear frequency response analysis of large-scale appli-
cations in solid mechanics.

We have proposed to use the harmonic balance method
for nonlinear steady-state frequency response of the discretized
equation of motion in the frequency domain. In conjunction
with a modal projection method using eigenmodes and sec-
ond order modal derivatives as reduction basis, the method
can be applied even to realistic applications with large spa-
tial discretizations. For an efficient spatial discretization of
the nonlinear partial differential equations arising from 3-
dimensional large deformation hyperelasticity we employ
the idea of isogeometric analysis using an isogeometric fi-
nite element method, but our approach could be applied us-
ing any spatial discretization method. As our numerical ex-
amples show, the reduction method provides a good accu-
racy of frequency response amplitudes and resonance be-
haviour, although significantly reduces the effort for numer-
ical solution of the harmonic balance equation system. For
large-scale applications harmonic balance becomes feasible
only using model order reduction.

Even though the proposed reduction method makes non-
linear frequency response analysis feasible in application to
3-dimensional structural problems, it still remains a time-
consuming task. Especially for very large applications a speed-
up of the sampling process is necessary, where full residual
and tangent stiffness have to be assembled for every sample.
A complexity reduction might there be achieved by methods
such as Discrete Empirical Interpolation [42]. For further in-
dustrial problems we plan to extend the method to materials
with nonlinear viscoelastic properties such as rubber, incom-
pressible and near incompressible materials using mixed fi-
nite element discretizations and contact problems. We also
aim at combining nonlinear frequency analysis with shape
optimization.
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Fig. 16 Frequency response
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Fig. 19 Snapshots
of vibrating “TER-
RIFIC Demonstrator”
for f = 331.3 Hz at
τ = 0, π/2, π, 3π/2.
Nonlinear deformation
from HBM-MD is col-
ored by von Mises stress
in Pa, linear DFR defor-
mation and undeformed
configuration are in gray
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“TERRIFIC Demonstra-
tor” for f = 331.3 Hz for
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Design and Production in the Factory of the Future through Isogeo-
metric Technologies [36].

The “TERRIFIC part” was designed by Stefan Boschert (Siemens
AG, Germany) and the isogeometric parameterization provided by Vi-
beke Skytt (SINTEF, Norway).
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