10 research outputs found

    A 15‐year hail streak climatology for the Alpine region

    No full text
    In this study, we present a unique 15-year hail streak climatology for Switzerland based on volumetric radar reflectivity. Two radar-based hail detection products and an automatic thunderstorm-tracking algorithm were reprocessed for the Extended convective season (April–September) between 2002 and 2016. More than 1.1 Million convective cells were automatically tracked over the full radar domain, and over 191,000 storms and 31,000 hail streaks in the considered subdomain were selected for analysis following consistency and robustness tests. The year-to-year variability in t h e number of hailstorms reveals two types of convective seasons: (a) a few seasons with hail frequency far above the average, and (b) all other years with an average number of hailstorms. A high number of hailstorms in a particular year is not correlated with a higher number of convective storms in general, but is related to a greater fraction of severe storms. Convection initiation, hail initiation, and hail frequency maxima are located along the southern and northern foothills over the pre-Alpine area and over th e Jura mountains. Few hail streaks are present over the Alpine main ridge. Hail streak frequency and location is found to be strongly dependent on the synoptic-scale weather regimes. This is important for monthly and seasonal outlooks, as well as for climate modelling. Analysis of storm life cycles shows that: (a) the majority of hail swaths contain only a single hail streak, (b) severe storms follow a more rapid evolution during their initial stages than do less severe storms, and (c) severe storms produce more spatially extended hail streaks. Finally, significant seasonal and diurnal cycles are present in most of the considered storm characteristics

    A CO-based method to determine the regional biospheric signal in atmospheric CO 2

    Get PDF
    Regional-scale inverse modeling of atmospheric carbon dioxide (CO2) holds promise to determine the net CO2 fluxes between the land biosphere and the atmosphere. This approach requires not only high fidelity of atmospheric transport and mixing, but also an accurate estimation of the contribution of the anthropogenic and background CO2 signals to isolate the biospheric CO2 signal from the atmospheric CO2 variations. Thus, uncertainties in any of these three components directly impact the quality of the biospheric flux inversion. Here, we present and evaluate a carbon monoxide (CO)-based method to reduce these uncertainties solely on the basis of co-located observations. To this end, we use simultaneous observations of CO2 and CO from a background observation site to determine the background mole fractions for both gases, and the regional anthropogenic component of CO together with an estimate of the anthropogenic CO/CO2 mole fraction ratio to determine the anthropogenic CO2 component. We apply this method to two sites of the CarboCount CH observation network on the Swiss Plateau, Beromünster and Lägern-Hochwacht, and use the high-altitude site Jungfraujoch as background for the year 2013. Since such a background site is not always available, we also explore the possibility to use observations from the sites themselves to derive the background. We contrast the method with the standard approach of isolating the biospheric CO2 component by subtracting the anthropogenic and background components simulated by an atmospheric transport model. These tests reveal superior results from the observation-based method with retrieved wintertime biospheric signals being small and having little variance. Both observation- and model-based methods have difficulty to explain observations from late-winter and springtime pollution events in 2013, when anomalously cold temperatures and northeasterly winds tended to bring highly CO-enriched air masses to Switzerland. The uncertainty of anthropogenic CO/CO2 emission ratios is currently the most important factor limiting the method. Further, our results highlight that care needs to be taken when the background component is determined from the site’s observations. Nonetheless, we find that future atmospheric carbon monitoring efforts would profit greatly from at least measuring CO alongside CO2
    corecore