81 research outputs found

    Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    Get PDF
    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer. cop. 2014 AIP Publishing LLC

    Unification of trap-limited electron transport in semiconducting polymers

    Get PDF
    Electron transport in semiconducting polymers is usually inferior to hole transport, which is ascribed to charge trapping on isolated defect sites situated within the energy bandgap. However, a general understanding of the origin of these omnipresent charge traps, as well as their energetic position, distribution and concentration, is lacking. Here we investigate electron transport in a wide range of semiconducting polymers by current-voltage measurements of single-carrier devices. We observe for this materials class that electron transport is limited by traps that exhibit a Gaussian energy distribution in the bandgap. Remarkably, the electron-trap distribution is identical for all polymers considered: the number of traps amounts to 3 × 1023 traps per m3 centred at an energy of ∼3.6 eV below the vacuum level, with a typical distribution width of ∼0.1 eV. This indicates that the electron traps have a common origin that, we suggest, is most likely related to hydrated oxygen complexes. A consequence of this finding is that the trap-limited electron current can be predicted for any polymer. © 2012 Macmillan Publishers Limited. All rights reserved

    Efficient polymer light-emitting diode with air-stable aluminum cathode

    Get PDF
    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlOx) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtained by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlOx cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlOx into the emissive layer. PLEDs with an AlOx cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation

    Polaron spin current transport in organic semiconductors

    Get PDF
    In spintronics, pure spin currents play a key role in transmitting, processing and storing information. A pure spin current is a flow of electron spin angular momentum without a simultaneous flow of charge current. It can be carried by conduction electrons or magnons and has been studied in many inorganic metals, semiconductors and insulators, but not yet in organic semiconductors. Charge carriers in π-conjugated organic materials are localized spin-1/2 polarons which move by hopping, but the mechanisms of their spin transport and relaxation are not well understood. Here we use ferromagnetic resonance spin pumping in a ferromagnet/conjugated polymer/nonmagnetic spin-sink trilayer to demonstrate the ability of polarons to carry pure spin currents over hundreds of nanometres with long spin relaxation times of up to a millisecond and to exhibit Hanle precession. By systematically comparing charge and spin transport on the same trilayer we show that spin-orbit coupling mediates spin relaxation at room temperature.This work was supported by the Cabinet Office, Government of Japan through its “Funding Program for Next Generation World-Leading Researchers”, PRESTO-JST “Innovative nano-electronics through interdisciplinary collaboration among material, device and system layers”, the Asahi Glass Foundation and the Engineering and Physical Sciences Research Council (EPSRC).This is the accepted version of the article. The final version was published in Nature Physics and is available at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2901.html. Nature Publishing Group's licence and reuse policy is available at http://www.nature.com/authors/policies/license.html

    The future of the CDM: same same, but differentiated?

    Get PDF
    Policy-makers and scientists have raised concerns about the functioning of the Clean Development Mechanism (CDM), in particular regarding its low contribution to sustainable development, unbalanced regional and sectoral distribution of projects, and its limited contribution to global emission reductions. Differentiation between countries or project types has been proposed as a possible way forward to address these problems. An overview is provided of the different ways in which CDM differentiation could be implemented. The implications for the actors involved in the CDM are analysed, along with a quantitative assessment of the impacts on the carbon market, using bottom-up marginal abatement cost curves. The discounting of CDM credits, quota systems, or differentiated eligibility of countries could help to address several of the concerns raised. Preferential treatment may also make a limited contribution to achieving the aims of CDM differentiation by increasing opportunities for under-represented host countries. The impact on the carbon market appears to be limited for most options
    corecore