1,417 research outputs found

    Conformal fixed point, Cosmological Constant and Quintessence

    Get PDF
    We connect a possible solution for the ``cosmological constant problem'' to the existence of a (postulated) conformal fixed point in a fundamental theory. The resulting cosmology leads to quintessence, where the present acceleration of the expansion of the universe is linked to a crossover in the flow of coupling constants.Comment: More detailed discussion of quantum fluctuations,update with WMAP-data,4 pages,LaTe

    On the origin of the difference between time and space

    Full text link
    We suggest that the difference between time and space is due to spontaneous symmetry breaking. In a theory with spinors the signature of the metric is related to the signature of the Lorentz-group. We discuss a higher symmetry that contains pseudo-orthogonal groups with arbitrary signature as subgroups. The fundamental asymmetry between time and space arises then as a property of the ground state rather than being put into the formulation of the theory a priori. We show how the complex structure of quantum field theory as well as gravitational field equations arise from spinor gravity - a fundamental spinor theory without a metric.Comment: 4 page

    Dilatation symmetry in higher dimensions and the vanishing of the cosmological constant

    Full text link
    A wide class of dilatation symmetric effective actions in higher dimensions leads to a vanishing four-dimensional cosmological constant. This requires no tuning of parameters and results from the absence of an allowed potential for the scalar dilaton field. The field equations admit many solutions with flat four-dimensional space and non-vanishing gauge couplings. In a more general setting, these are candidates for asymptotic states of cosmological runaway solutions, where dilatation symmetry is realized dynamically if a fixed point is approached as time goes to infinity. Dilatation anomalies during the runaway can lift the degeneracy of solutions and lead to an observable dynamical dark energy.Comment: 4 page

    Spinor gravity and diffeomorphism invariance on the lattice

    Full text link
    The key ingredient for lattice regularized quantum gravity is diffeomorphism symmetry. We formulate a lattice functional integral for quantum gravity in terms of fermions. This allows for a diffeomorphism invariant functional measure and avoids problems of boundedness of the action. We discuss the concept of lattice diffeomorphism invariance. This is realized if the action does not depend on the positioning of abstract lattice points on a continuous manifold. Our formulation of lattice spinor gravity also realizes local Lorentz symmetry. Furthermore, the Lorentz transformations are generalized such that the functional integral describes simultaneously euclidean and Minkowski signature. The difference between space and time arises as a dynamical effect due to the expectation value of a collective metric field. The quantum effective action for the metric is diffeomorphism invariant. Realistic gravity can be obtained if this effective action admits a derivative expansion for long wavelengths.Comment: 13 pages, proceedings 6th Aegean Summer School, Naxos 201

    Chiral freedom and electroweak symmetry breaking

    Get PDF
    Antisymmetric tensor fields with chiral couplings to quarks and leptons may induce spontaneous electroweak symmetry breaking in a model without a ``fundamental'' Higgs scalar. No microscopic local mass term for the chiral tensors or ``chirons'' is allowed by the symmetries and our model exhibits only dimensionless couplings. However, the chiral couplings are asymptotically free and therefore generate a mass scale where they grow large. We argue that at this scale mass terms for the chiral tensor fields are generated non-perturbatively - the chirons appear as new massive spin one particles. Furthermore a scalar top-antitop condensate forms, giving mass to the weak gauge bosons and fermions. In this scenario the longstanding gauge hierarchy problem finds a solution similar to the mass generation in QCD. We compute the general form of the effective action for the chiral tensors and sketch several possibilities of their detection at LHC or through precision tests of the electroweak standard model.Comment: 30 pages, 7 figure

    Can observations look back to the beginning of inflation?

    Get PDF
    The cosmic microwave background can measure the inflaton potential only if inflation lasts sufficiently long before the time of horizon crossing of observable fluctuations, such that non-linear effects in the time evolution of Green's functions lead to a loss of memory of initial conditions for the ultraviolet tail of the spectrum. Within a derivative expansion of the quantum effective action for an interacting scalar field we discuss the most general solution for the correlation function, including arbitrary pure and mixed quantum states. In this approximation no loss of memory occurs - cosmic microwave observations see the initial spectrum at the beginning of inflation, processed only mildly by the scale-violating effects at horizon crossing induced by the inflaton potential.Comment: additional example and references, 5 page

    Quantum correlations in classical statistics

    Full text link
    Quantum correlations can be naturally formulated in a classical statistical system of infinitely many degrees of freedom. This realizes the underlying non-commutative structure in a classical statistical setting. We argue that the quantum correlations offer a more robust description with respect to the precise definition of observables.Comment: 17 pages,LaTe

    Inflation, quintessence, and the origin of mass

    Get PDF
    In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The history of the Universe describes a crossover from a scale invariant "past fixed point" where all particles are massless, to a "future fixed point" for which spontaneous breaking of the exact scale symmetry generates the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time - the universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass are field-dependent and increase with time. In this "freeze frame" the Universe shrinks and heats up during radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first stage of the crossover. A simple model with no more free parameters than Λ\LambdaCDM predicts for the primordial fluctuations a relation between the tensor amplitude rr and the spectral index n,r=8.19(1−n)−0.137n,r=8.19(1-n)-0.137. The crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, relating the present dark energy density to the present neutrino mass. At present our simple model seems compatible with all observational tests. We discuss how the fixed points can be rooted within quantum gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity could be tested both by very early and late cosmology.Comment: Extended discussion of inflation models, 38 pages, 7 figure
    • …
    corecore