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Abstract

In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The 
history of the Universe describes a crossover from a scale invariant “past fixed point” where all particles are 
massless, to a “future fixed point” for which spontaneous breaking of the exact scale symmetry generates 
the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time – the 
universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass 
are field-dependent and increase with time. In this “freeze frame” the Universe shrinks and heats up during 
radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the 
familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first 
stage of the crossover. A simple model with no more free parameters than �CDM predicts for the primordial 
fluctuations a relation between the tensor amplitude r and the spectral index n, r = 8.19(1 −n) −0.137. The 
crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition 
to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, 
relating the present dark energy density to the present neutrino mass. At present our simple model seems 
compatible with all observational tests. We discuss how the fixed points can be rooted within quantum 
gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity 
could be tested both by very early and late cosmology.
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1. Introduction

A scalar field plays a dominant role both in inflation in primordial cosmology and dynamical 
dark energy in the present epoch. The potential of this field constitutes primordial or late dark 
energy, driving an accelerated expansion in the big bang picture. Quintessential inflation [1,2]
identifies the inflaton field for inflation with the scalar field of quintessence or cosmon which is 
responsible for present dynamical dark energy. In particular, cosmon inflation [3] formulates this 
unification in the context of variable gravity [4], where the strength of gravity depends on the 
value of the cosmon field.

Both inflation and quintessence can be closely related to approximate dilatation or scale sym-
metry. For inflation this symmetry is at the origin of the observed approximate scale invariance 
of the spectrum of primordial fluctuations. In present dynamical dark energy the cosmon plays 
the role of the pseudo Goldstone boson of spontaneously broken dilatation symmetry [5]. In case 
of exact dilatation symmetry it would be an exactly massless dilaton, while a tiny mass and po-
tential are generated by a “scale symmetry violation” or “dilatation anomaly”. Scale symmetry is 
intimately related to fixed points of “running” dimensionless couplings or mass ratios. At a fixed 
point any information about intrinsic mass or length scales is lost. Quantum scale symmetry is 
then realized even if the underlying quantum field theory is not scale invariant.

The presence of approximate scale symmetry both in the primordial and late cosmology sug-
gests that the infinite past and infinite future of the universe correspond to fixed points. We 
propose here that the two fixed points have different properties. For the fixed point in the infinite 
past scale symmetry is not spontaneously broken. All masses vanish. In contrast, the fixed point 
that will be approached in the infinite future is characterized by spontaneous symmetry breaking 
of dilatation symmetry, resulting in a spectrum of massive particles and a massless dilaton.

The way how scale symmetry is realized and explicitly or spontaneously broken is directly 
related to the basic origin of mass. All particle masses are generated either by explicit or spon-
taneous breaking of scale symmetry. The explicit breaking by an intrinsic mass scale plays a 
crucial role in the crossover between the two fixed points. It is responsible for scale violation in 
the primordial fluctuation spectrum and for the end of inflation. Spontaneous breaking charac-
terizes the “future fixed point” and our present universe. The presently observed particle masses 
are dominated by spontaneous scale symmetry breaking, while dark energy reflects the tiny ex-
plicit breaking. The basic mechanisms that generate the particle masses thus provide the physical 
“raison d’être” for inflation and late dark energy, such that these key cosmological ingredients 
appear less “ad hoc”.

This work is motivated by a central assumption about the properties of quantum gravity that 
we call “crossover gravity”. The running of dimensionless couplings or mass ratios as a function 
of some intrinsic mass scale μ is assumed to exhibit two fixed points for μ → ∞ and μ → 0, 
with a crossover between the fixed points for finite nonzero μ. Dimensionless functions can only 
depend on dimensionless quantities. If time and space gradients or momenta are proportional to 
μ (or can be neglected), the renormalized dimensionless functions can still depend on the ratio 
μ/χ , with χ the value of the scalar cosmon field which equals the variable Planck mass in our 
normalization. The ultraviolet (UV) field point is realized for μ → ∞ at fixed χ or χ → 0 at 
fixed μ. Indeed, with all particle masses proportional to χ this fixed point realizes unbroken 
scale symmetry. All excitations are massless. The infrared (IR) fixed point occurs for μ → 0 or 
χ → ∞. A nonvanishing value of χ spontaneously breaks scale symmetry. We will see that the 
cosmological solutions of our model realize an evolution where χ vanishes in the infinite past 
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and diverges in the infinite future. The cosmological evolution therefore interpolates between the 
UV-fixed point in the past and the IR-fixed point in the future.

Inflation describes the vicinity of the past fixed point. It can extend to the infinite past in 
physical time. The inflationary epoch has to end, however. “Late cosmology” comprises epochs 
of radiation-, matter- and dark energy domination. It is characterized by the approach towards the 
future fixed point. We will describe the transition from inflation to late cosmology as a first stage 
of the crossover between the two fixed points. In the crossover region couplings have to run from 
one fixed point to the other. Scale symmetry is therefore necessarily violated in the crossover 
region. This is the basic reason for the qualitative change in the dynamics of the cosmon that 
occurs at the end of inflation.

If there is more than one relevant or marginal deviation from the “past fixed point” the 
crossover may occur in different stages. In case of a slow running (e.g. logarithmic) the scales 
associated to these stages can be separated by many orders of magnitude. We assume here that 
in the beyond standard model sector of particle physics the crossover is completed only in a sec-
ond stage. This sector influences the masses of the neutrinos by “non-renormalizable operators” 
according to the see-saw or cascade mechanism. While the mass ratios of all particles except for 
neutrinos reach fixed values already at the end of inflation, the ratio of neutrino mass to electron 
mass makes the transition to the future constant value only in the present epoch. The relative 
increase of the neutrino masses realizes “growing neutrino quintessence” [6,7] and explains the 
“why now problem” by relating the present dark energy density to the present neutrino mass.

The history of dark energy reflects the two stages of the crossover. A primordial scaling so-
lution corresponds to dominant dark energy during inflation. The first stage of crossover ends 
this scaling solution, triggering a transition to a different scaling solution during the radiation 
and matter dominated epochs. As a consequence of this scaling solution dark energy decreases 
proportional to the dominant radiation or matter component [5], constituting a small fraction 
of “early dark energy”. Neutrinos are relativistic during this epoch and their masses play no 
role. The second stage of the crossover takes place in the present cosmological epoch. A sub-
stantial increase of the neutrino masses ends the second scaling solution once neutrinos become 
non-relativistic. This cosmic “trigger event” has happened around redshift z ≈ 5, inducing a tran-
sition epoch with dominant dark energy and accelerated expansion. Once the second stage of the 
crossover is completed, the ratio between neutrino and electron mass approaches a constant value 
according to the future fixed point. Cosmology in the far future may correspond to a new scaling 
solution for which dark energy needs not to remain dominant.

A crossover in two steps can be associated with a flow trajectory in the vicinity of an in-
termediate (approximate) fixed point. We may refer to this fixed point as the “standard model 
fixed point”. For this fixed point the renormalizable dimensionless couplings of all particles are 
the ones observed in present experiments. Neutrino masses, however, are typically substantially 
smaller than their present value. The standard model fixed point may be unstable in the sector of 
heavy particles with masses much larger than the Fermi scale, or in a sector of standard model 
singlets coupled only very weakly to the particles of the standard model. Such an instability will 
finally drive the flow trajectory away from the standard model (SM) fixed point and towards the 
infrared fixed point.

On the other hand, the zeros of the β-functions for the renormalizable couplings of the stan-
dard model are stable for decreasing μ, such that the presently measured values hold to high 
accuracy for the entire matter and radiation dominated epochs. The second step of the crossover 
affects first only the neutrino masses. Nevertheless, when the second step of the crossover will 
be completed in the far future, it is possible that the changes in the beyond standard model sector 
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Fig. 1. Schematic view of the crossover from the UV-fixed point (UV) to the infrared fixed point (IR). Arrows indicate 
the direction of decreasing μ or increasing χ . This direction corresponds to the flow of cosmic time from the infinite past 
(UV) to the infinite future (IR). The crossover trajectory passes near an (approximate) fixed point (SM) that characterizes 
the present standard model. The two regimes of fast changes, CR1 and CR2, correspond to the two steps of the crossover. 
We also indicate the corresponding cosmological epochs: inflation (I), end of inflation (EI), radiation domination (R), 
matter domination (M), dark energy domination (Q).

also affect the renormalizable couplings of the standard model. Their values at the infrared fixed 
point could be different from the present ones.

We have depicted the flow trajectory in some abstract “coupling space” or “theory space” in 
Fig. 1. It shows the first stage of the crossover from the UV-fixed point to the vicinity of the 
standard model fixed point, and the subsequent second step of the crossover to the infrared fixed 
point. We can associate the different cosmological epochs to the corresponding parts of the flow 
trajectory.

This paper is organized as follows: In Section 2 we introduce the flow equations underlying 
our approach. They describe the change of couplings as an intrinsic overall mass scale μ is 
varied. We discuss the properties of the ultraviolet and infrared fixed points. For this purpose 
we choose a frame of variable gravity where the crossover is described by the flow equation for 
the “kinetial”, e.g. the coefficient of the scalar kinetic term. In particular, we investigate settings 
where the kinetial diverges at the ultraviolet fixed point with a large anomalous dimension.

In Section 3 we turn to the cosmological solution for values of the cosmon field χ close to 
the ultraviolet fixed point and the first step of crossover away from it. It describes an epoch of 
inflation and its end. We compute the properties of the primordial density fluctuations. Both the 
spectral index n and the tensor to scalar ratio r are determined by the anomalous dimension σ
and therefore related, 1 − n = r(2 + σ)/16. Computing r and n in terms of σ and the number of 
e-foldings N between horizon crossing of the observable fluctuations and the end of inflation, we 
establish the relation r = 8.19(1 − n) − 0.137. The crossover provides for a natural explanation 
of the small amplitude of primordial fluctuations. This amplitude is suppressed by the ratio of the 
intrinsic mass scale μ over the crossover scale m, which is exponentially small due to the slow 
running near the fixed point.

Section 4 discusses “late cosmology” after the end of inflation. It starts with a scaling solution 
for the radiation and matter dominated epochs that is characterized by a small almost constant 
fraction of early dark energy [5,8–10]. This scaling explains why the present dark energy density 
is of the same order as the present matter energy density. In particular, we discuss models where 
the infrared fixed point corresponds to a “conformal kinetic term”. The deviation from the fixed 
point is characterized by a function B(χ/μ) that decreases with an inverse logarithm for large 
χ/μ, B−1 = κ ln(χ/μ). The fraction in early dark energy is proportional to B and therefore 
naturally small for the large values of χ relevant for late cosmology. The slow flow of B induces 
small scaling violations for the cosmological solution that we discuss in terms of an approximate 
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analytic solution. We find a low value for the dark energy fraction at last scattering, close to 
the observational bounds. As the second step of the crossover sets in the neutrino masses start 
to increase substantially. Once neutrinos become non-relativistic they stop the scaling solution, 
“freezing” the dark energy density at the value it has reached at this moment. This leads to a 
phenomenology very close to a cosmological constant, with a value determined by the present 
average neutrino mass. Such a scenario solves the “why now?” problem.

In Section 5 we turn more closely to the particle physics aspects of the ultraviolet fixed point. 
For an anomalous dimension in the range σ > 1 the couplings of the renormalized cosmon field 
are asymptotically free. The assumed fixed point that would provide for non-perturbative renor-
malizability (asymptotic safety) of quantum gravity has then the simple structure of a massless 
renormalized scalar field (with standard kinetic term) coupled to fourth order gravity. The non-
perturbative character is related to anomalous dimensions for deviations from this fixed point that 
are of the order one. We argue that large anomalous dimensions can lead to a natural explanation 
of the small ratio Fermi scale/Planck scale and therefore provide for a possible solution of the 
gauge hierarchy problem. The gauge hierarchy and the small amplitude of primordial fluctuations 
could become related.

Section 6 describes the ultraviolet fixed point in different frames (different choices of field 
variables for metric and scalar field). We show that our ansatz with a simple quadratic cosmon 
potential and crossover described by the kinetial can be obtained by field transformations from a 
very large class of variable gravity models. It is therefore rather generic. The description of the 
crossover in terms of the kinetial is a convenience rather than a fundamental feature. We also 
discuss the asymptotic solutions for the infinite past in an equivalent “primordial flat frame”. In 
this frame cosmology approaches flat space in the infinite past and the eternity of the universe is 
particularly apparent. Our conclusions are presented in Section 7.

Several parts of a more detailed discussion are displayed in a series of Appendices A–E. 
In Appendix A we discuss the status of the flow equations in view of a future quantum gravity 
computation, e.g. within functional renormalization. We relate the μ-dependence of couplings in 
the quantum effective action to the scaling solutions for the effective average action. We discuss 
the appearance of relevant parameters at the UV-fixed point as free integration constants in the 
scaling solution. In Appendix B we illustrate the crossover between two fixed points in the flow 
of dimensionless couplings or mass ratios. We discuss the time variation of couplings in the 
standard model and neutrino masses.

Appendix C contains the field equations derived from the quantum effective action of 
crossover gravity. We include higher order curvature invariants for the discussion of asymptotic 
solutions extending to the infinite past. Numerical solutions show the approach of a large class 
of solutions towards a family of scaling solutions. Some of the solutions correspond in the Ein-
stein frame to a transition from pre-big-bang to big-bang cosmology, while they are completely 
smooth in the freeze frame. Appendix D reformulates the model with a curvature squared invari-
ant in terms of an explicit additional scalar field. This helps to understand the properties of the 
solutions discussed in Appendix C. Appendix E enlarges the class of crossover models and maps 
them to the freeze frame.

2. Fixed points and crossover

In this section we display our model of “crossover gravity”. We discuss the ultraviolet and 
infrared fixed point for a system of gravity coupled to a scalar field. Away from the fixed point 
the dimensionless couplings are scale-dependent and realize a crossover between the two fixed 



116 C. Wetterich / Nuclear Physics B 897 (2015) 111–178
points. Our main tool is the quantum effective action � from which the exact field equations 
follow by variation. The fixed points and the crossover are reflected in the properties of �. Be-
sides the masses and couplings of other particles our model involves only four parameters which 
describe cosmology from inflation to present dark energy domination.

2.1. Running couplings and fixed points

In quantum field theories the renormalized dimensionless couplings “run” as functions of an 
intrinsic mass scale μ. Here we consider all intrinsic mass parameters as being proportional to μ, 
with ratios of intrinsic mass scales associated to dimensionless couplings. For a fixed point this 
flow stops and dimensionless couplings become independent of μ. An ultraviolet (UV) fixed 
point is reached if suitable dimensionless couplings reach constant values for μ → ∞. Such a 
fixed point renders gravity non-perturbatively renormalizable (asymptotic safety [11–14]). Di-
latation symmetry is an exact quantum symmetry at the UV fixed point. An infrared (IR) fixed 
point corresponds to the stop of the flow of dimensionless couplings for μ → 0. All intrinsic mass 
parameters vanish in this limit. With dimensionless couplings independent of μ scale symmetry 
is again realized. In general, the existence of an IR fixed point is not compulsory – alternatives 
are diverging dimensionless couplings for μ → 0 or even a breakdown of the model at a critical 
value μc > 0. We assume here that such divergencies do not happen and an IR-fixed point there-
fore exists. A first functional renormalization investigation of such a possible IR fixed point can 
be found in Ref. [14].

The flow of couplings as a function of μ is similar but not identical to the running as a 
function of μ̃ ∼ momentum divided by particle mass (say the electron mass). It is this running as 
a function of momentum/mass that is described by the usual β-functions of the standard model of 
particle physics. There a non-trivial running typically occurs in the range where μ̃ is larger than 
the relevant particle masses, while it stops once μ̃ is below those masses. In our setting, the flow 
as a function of μ describes the effect of a simultaneous change of all intrinsic mass scales ∼ μ. 
Besides the change in momentum scale this also includes the change due to a mass parameter 
in the effective cosmon potential. The μ-flow equations need a separate computation which has 
not yet been performed. They partly are similar in spirit to the running of couplings as a function 
of a mass parameter investigated by Symanzik [15]. Different μ correspond conceptually to a 
family of different theories. These theories cannot be distinguished by observation, however. 
Since only dimensionless ratios can be observed the value of μ just sets the unit for quantities 
with dimension of mass or inverse length or time. (We use h̄ = c = kB = 1.) We will employ here

μ−1 = 1010 yr, (1)

such that the present value of the variable Planck mass takes its usual value, cf. Section 4. There 
is also some analogy to the functional renormalization flow of the effective average action [16,
17], with IR-cutoff k associated to μ. We discuss the conceptual setting of the μ-flow equation 
in more detail in Appendix A and give examples in Appendix B.

2.2. Variable gravity

We will work within variable gravity [4] and investigate the cosmological solutions of the 
field equations derived from the quantum effective action for the coupled cosmon-gravity system

� =
∫ √

g

{
−1

2
χ2R + μ2χ2 + 1

2

(
B(χ/μ) − 6

)
∂μχ∂μχ

}
. (2)
x
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The variable Planck mass is given by the value of the cosmon field χ . The quadratic cosmon 
potential V = μ2χ2 involves the intrinsic mass scale μ. A large family of effective actions can 
be brought by field transformations to a form where the coefficient of the curvature scalar R is 
− 1

2χ2 and the scalar potential is quadratic, V (χ) = μ2χ2. We will discuss this issue in Section 6. 
We then remain with the dimensionless function B(χ/μ). Its dependence on μ is described by 
the μ-flow equation. Stability requires B ≥ 0. Conformal symmetry is realized for B = 0, μ = 0.

The quantum effective action should be supplemented by higher order curvature invariants,

	� =
∫
x

√
g

{
−1

2
C(χ/μ)R2

+ D(χ/μ)

(
RμνRμν − 1

3
R2
)

+ E(χ/μ)(Rμνρσ Rμνρσ − 4RμνR
μν + R2)

}
. (3)

These terms will play a role for graviton–graviton scattering at and near the UV-fixed point and 
for the approach of the cosmological solution to the infinite past, χ/μ → 0. For the cosmological 
epochs discussed in this paper they are subleading and will be omitted in the explicit calculations 
of the main text. For constant E the last term in eq. (3) is the topological Gauss–Bonnet invariant 
which does not contribute to the field equations. The invariant multiplying D can be written as a 
linear combination of the squared Weyl tensor and the Gauss–Bonnet invariant. For constant D
the term ∼ D does not contribute to the field equations for a spatially flat Robertson–Walker met-
ric. The influence of the higher curvature invariant with constant C is discussed in Appendices C 
and D.

We do not include a possible scale invariant contribution to the cosmon potential 	V = λχ4. 
Indeed, the functional renormalization investigation [14] of the behavior of a possible fixed point 
suggests that the cosmon potential cannot increase ∼ χ4 for χ → ∞. The infrared fixed point 
proposed in Ref. [14] has indeed λ = 0. A term ∼ λχ4 is scale invariant but not conformal in-
variant. If the scale invariance of the IR-fixed point for χ → ∞ implies conformal symmetry, 
as advocated in Refs. [18,19], such a term is not allowed. This situation is suggested by the 
investigation of higher dimensional theories with scale invariance [20,21]. It is precisely the be-
havior V (χ → ∞) ∼ χ4 that would not allow a field redefinition to the freeze frame V = μ2χ2. 
(Other powers are allowed.) The absence of a term ∼ λχ4 implies the asymptotic vanishing of 
the observable cosmological constant [5].

Dimensionless functions as B (or C, D and E) can only depend on the dimensionless ratio 
χ/μ. This links their μ-dependence according to the flow equation to their dependence on χ . 
The UV-fixed point for μ/χ → ∞ can also be seen as the limit χ → 0, while the IR-fixed 
point corresponds to the limit χ → ∞. We will find cosmological solutions where χ varies from 
χ → 0 in the infinite past to χ → ∞ in the infinite future. This is how cosmology can describe 
the crossover between two fixed points. The UV-fixed point for χ → 0 will often be called the 
“past fixed point”, and the IR-fixed point for χ → ∞ is associated with the “future fixed point”.

In the context of variable gravity the flow equations for dimensionless couplings concern the 
quantities B, C, D and E. More on the conceptual status of the flow equations for these quantities 
can be found in Appendix A. In the present paper we assume a specific form of B(χ/μ) and 
investigate the cosmological consequences of such a setting.
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2.3. Infrared and ultraviolet fixed points

For the IR-fixed point μ vanishes and B reaches a constant, lim
μ→0

B(χ/μ) = B∞. The term 

∼ μ2χ2 in eq. (2) is absent for μ → 0, and the quantum effective action contains no longer 
any parameter with dimension mass. It is invariant under scale symmetry, with a scaling of χ
according to its canonical dimension. At the IR-fixed point the effective action is scale invariant 
and takes the simple form of a free scalar field coupled to gravity,

�IR =
∫
x

√
g

{
−1

2
χ2R + 1

2
(B∞ − 6)∂μχ∂μχ

}
. (4)

(For χ → ∞ we can neglect the higher order curvature terms.) For B∞ = 0 the effective action 
is also invariant under conformal transformations. The scalar is no longer a propagating degree 
of freedom.

For the realization of an UV-fixed point the anomalous dimension of the cosmon will be 
crucial. Indeed, for a canonical scaling of χ the “mass term” ∼ μ2χ2 would spoil scale invariance 
for μ → ∞. An anomalous dimension for μ → ∞ is realized if B(χ/μ) diverges for μ → ∞
with a power law,

B = b

(
μ

χ

)σ

=
(

m

χ

)σ

. (5)

(We take χ = 0, negative χ being covered by the symmetry χ → −χ .) For σ �= 2 the gravita-
tional higher order invariants (3) (with constant C, D, E) and the scalar kinetic term are then 
invariant under the scaling

gμν → α2gμν , χ → α− 2
2−σ χ. (6)

At the UV-fixed point the effective action can be written in terms of a renormalized scalar field,

χR = b
1
2

(
1 − σ

2

)−1
μ

σ
2 χ1− σ

2 , (7)

as

�UV =
∫
x

√
g

{
1

2
∂μχR∂μχR − 1

2
CR2 + D

(
RμνRμν − 1

3
R3
)}

. (8)

For constant C and D scale invariance is manifest – it is the renormalized field that shows the 
standard scaling χR → α−1χR . It is possible that C and D vanish at the fixed point, such that 
only a kinetic term for the renormalized scalar field is left.

The remaining terms for the cosmon potential and ∼ R read

	�UV =
∫
x

√
gcUV

(
μ2 − R

2

)
μ− 2σ

2−σ |χR| 4
2−σ ,

cUV = b− 2
2−σ

∣∣∣1 − σ

2

∣∣∣ 4
2−σ

. (9)

The limit μ → ∞ and fixed χ corresponds to χR/μ → 0 for σ < 2, and χR/μ → −∞ for σ > 2. 
In Section 5 we will discuss that for σ > 1 the term 	�UV accounts for deviations from the fixed 
point and can be neglected at the UV-fixed point. At the fixed point one finds a free massless 
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scalar field coupled to higher order gravity. For the boundary case σ = 1 the renormalized scalar 
field has a non-vanishing self-interaction, with scale invariant potential

V (χR) = 1

16b2
χ4

R. (10)

Also the limiting case σ = 2 can be associated with a fixed point – see Section 5. An UV-fixed 
point is therefore realized for

σ ≥ 1. (11)

Besides the cosmon-gravity part of the effective action (2), (3) we also have to specify the part 
for matter and radiation. We will take the standard model of particle physics and assume that all 
renormalized dimensionless couplings (e.g. gauge couplings, Yukawa couplings, Higgs-boson 
self interaction), normalized at momenta ∼ μ, are functions of χ/μ that reach fixed constant 
values for μ → ∞ and μ → 0. The UV-values are typically different from the IR-values. For 
example, one may imagine that all renormalized couplings vanish for μ → ∞, leaving only free 
particles at the UV-fixed point.

We write the coefficient of the quadratic term in the Higgs potential as −εH(χ/μ)χ2. For an 
IR-fixed point the dimensionless coupling εH goes to a (very small) constant. It actually becomes 
independent of μ for small enough ratios μ/χ , cf. Appendix A. No memory of the scale μ is 
then left for χ → ∞ – the Fermi scale is proportional to χ such that the charged lepton and 
quark masses as well as the gauge boson masses are proportional to χ [5]. Consider next the 
strong gauge coupling normalized at momenta given by the Fermi scale, ḡs = gs(Q

2 = εH χ2). 
It can only depend on the ratio Q2/χ2 = εH . For εH independent of μ also ḡs is independent 
of μ. Therefore �QCD scales ∼ χ , such that hadron masses are ∼ χ as well.

On the opposite end we may assume that the renormalized coupling corresponding to εH

does not diverge for χ → 0. With masses ∼ χ all particles are then massless at the UV-fixed 
point. Massless particles at the UV-fixed point are also realized for diverging εH , provided the 
renormalized masses scale with a positive power of χ .

The same general picture applies for particles beyond the standard model, in particular the 
sector of heavy singlets which influence the neutrino masses by the seesaw [22–24] or cascade 
[25–28] mechanism. The only difference to the standard model sector will be the relevant value 
of χ/μ for which the crossover between the two fixed points takes place.

The cosmology at the fixed points is not per se very interesting. For the past fixed point matter 
and radiation may be negligible. The field equations for the cosmon-gravity system derived from 
the effective action (2), (3) admit for constant C and D the simple solution

Rμν = μ2gμν , χ = 0. (12)

Another solution is simply flat Minkowski space,

gμν = ημν , χ = 0. (13)

The cosmology for the future fixed point is again of a simple type. A scale invariant model 
that obtains by omitting in eq. (2) the potential μ2χ2 has been proposed by Fujii [29,30]. After 
Weyl scaling it describes standard cosmology plus a massless dilaton with derivative couplings. 
The dilaton settles to a fixed value after a short period of initial damping of its motion, and plays 
no role for the subsequent “late” cosmology of the present epoch [5]. While interesting in its 
own right, such a scale invariant model cannot describe dynamical dark energy or quintessence. 
In our setting a cosmology similar to this model is reached for the future fixed point.
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The interesting cosmological features of inflation and dynamical dark energy are a conse-
quence of small scaling violations in the vicinity of the fixed points. Close to the past fixed point 
the scale symmetry violating terms (“dilatation anomaly”) 	�UV , cf. eq. (9), render the cosmo-
logical solution (12) unstable, such that any small value of χ slowly increases with increasing 
time t . This slow increase will be associated with the almost scale invariant epoch of inflation. 
As χ grows large enough the crossover to the future fixed point starts and inflation ends.

The subsequent radiation and matter dominated epochs belong already to the neighborhood 
of the standard model fixed point. For this fixed point the dominant scaling violation arises from 
the cosmon potential ∼ μ2χ2. This will describe dynamical dark energy, according to an ap-
proximate scaling solution with dark energy proportional to the dominant radiation or matter 
component. Indeed, the ratio of the potential V = μ2χ2 divided by the fourth power of the ef-
fective Planck mass χ4 decreases ∼ μ2/χ2 and reaches tiny values as χ moves to very large 
values in late cosmology. Such a behavior amounts to a solution of the “cosmological constant 
problem”. At the second step of the crossover an additional violation of dilatation symmetry in 
the neutrino sector stops the scaling evolution of the cosmon.

Realistic scaling solutions with a small fraction of early dark energy have been extensively 
discussed [4,5,8] for the case where B reaches for μ → 0 a small value

B(χ → ∞) = B∞ = 4

α2
. (14)

In the context of crossover gravity this would be the value of B at the IR-fixed point. Observa-
tional bounds on early dark energy restrict the allowed values to α � 10 [31–36]. (In view of 
possible degeneracies in the parameter space of our model we take here a conservative bound.) 
While this setting is perfectly viable, we investigate in the present paper the possible alternative 
that B vanishes at the IR-fixed point, B∞ = 0. For the “conformal value” B = 0 the cosmon is no 
propagating degree of freedom. Furthermore, for B < 0 the model becomes unstable. The flow 
of couplings typically avoids to cross from a stable to an unstable situation. It seems therefore 
reasonable to assume that B = 0 is a fixed point of the flow of B , and we will assume that it is 
reached for χ → ∞. As mentioned before, the IR-fixed point realizes conformal symmetry in 
this case. For finite χ one has B > 0.

2.4. Crossover

The crossover that leads to the end of inflation is related to the flow of the dimensionless 
function B(χ/μ). As a first example we take σ = 1 and discuss a one parameter flow equation

μ
∂B

∂μ
= κB2

1 + κB
. (15)

The approach to the fixed point at B = 0 is quadratic (vanishing anomalous dimension)

μ∂μB = κB2 for B → 0, (16)

while the approach to the fixed point B−1 = 0 involves an anomalous dimension

μ∂μB−1 = −B−1. (17)

The finer details of the crossover will be less important.
The UV-fixed point B−1 = 0 is approached for μ → ∞ or χ → 0. This fixed point is rele-

vant for the infinite past of our universe. The IR-fixed point B = 0 is approached for μ → 0 or 
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χ → ∞. It governs the infinite future. The solution of eq. (15) involves an integration constant 
ct which determines the particular trajectory of the flow according to the implicit solution

B−1 − κ lnB = κ

[
ln

(
χ

μ

)
− ct

]
= κ ln

(χ

m

)
. (18)

It is related to a mass scale m by dimensional transmutation, m = μ exp(ct ). The crossover 
between the two fixed points occurs in the region χ ≈ m and we will see that this coincides 
with the end of inflation. Late cosmology corresponds to χ 	 m, while primordial cosmology 
is characterized by χ 
 m. With B(χ) determined by eq. (18) our model (2) contains two free 
dimensionless parameters in the scalar-gravity sector, namely κ and ct . We will find below that 
realistic cosmology can be obtained in the region

κ = 0.5 , ct = 14. (19)

No tiny or huge dimensionless parameters appear in our setting.
The flow equation (3) is only a particular example for a crossover between two fixed points for 

which B−1 or B vanish, respectively. For an arbitrary anomalous dimension σ it is generalized 
to an extended family of models,

μ
∂B

∂μ
= κσB2

σ + κB
, (20)

with solution

B−1 − κ

σ
lnB = κ

[
ln

(
χ

μ

)
− ct

]
= κ ln

(χ

m

)
. (21)

Eqs. (15), (18) correspond to σ = 1, while eq. (20) indeed accounts for an arbitrary anomalous 
dimension σ at the UV-fixed point,

σ = lim
μ→∞μ∂μ lnB. (22)

The values of realistic parameters do not depend strongly on σ . For σ = 3 one has ct ≈ 12.
The crossover behavior needs also to be specified for the particle physics sector of our model. 

We present details in Appendix B and outline here only a few characteristics. We will assume 
that for the large values of χ/m relevant for nucleosynthesis and later epochs the dimensionless 
couplings are already very close to their fixed point values, such that their dependence on χ can 
be neglected for the purpose of cosmology. Similarly, we assume for these periods that the masses 
of all particles except for neutrinos have reached the scaling behavior mp ∼ χ appropriate for the 
fixed point. With this simple assumption the severe observational bounds on the time variation 
of fundamental couplings and apparent violations of the equivalence principle are obeyed [5].

Neutrino masses also involve a sector of superheavy particles by virtue of the seesaw or cas-
cade mechanism. These particles are part of the beyond standard model sector of particle physics. 
For this sector we postulate that the crossover is happening in the region of χ/μ relevant for 
present cosmology, such that the present variation of the average neutrino mass with χ ,

∂ lnmν

∂ lnχ |today

= 2γ̃ + 1, (23)

involves a parameter γ̃ > 0. This parameter only matters for a rather recent cosmological epoch 
when neutrinos have become non-relativistic. It plays no role as long as neutrinos are relativis-
tic. Together with the present values for the masses and couplings of particles, including some 
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dark matter candidate, the four parameters κ, σ, ct and γ̃ will be sufficient to describe a realis-
tic cosmological sequence of inflation, radiation- and matter-domination, as well as the present 
transition to a new dark energy dominated epoch. All four parameters are of the order one and 
no particular fine-tuning is needed. At present, it seems that our model is compatible with all 
cosmological observations. We will see that the anomalous dimension σ is closely related to the 
spectral index of the primordial fluctuations.

The field equations derived from the effective action (2), together with the crossover of the 
kinetial (21) and the crossover parameter in the neutrino sector γ̃ (eq. (23)) are the practical basis 
for computing our cosmological results. Besides the deeper motivation from quantum gravity our 
model stands alone as a simple phenomenological description of cosmology.

3. Primordial cosmology and inflation

In this section we discuss the early cosmology of our model. It is governed by the proxim-
ity of the ultraviolet fixed point and describes an epoch of inflation. After a brief discussion of 
this epoch within the freeze frame of variable gravity, we perform a field transformation to the 
Einstein frame with a standard exponential form of the inflaton potential. This is most suitable 
for a simple detailed discussion of the properties of primordial fluctuations. For the observable 
aspects of the inflationary epoch the higher order curvature invariants play no role. We can there-
fore limit the discussion to the effective action (2), for which the crossover is described by the 
kinetial (21).

3.1. Primordial cosmology

We begin with a brief discussion of primordial cosmology in the freeze frame. The field equa-
tions derived from the effective action (2), (3) are displayed and discussed for constant C and D
in Appendix C. For C > 0 an equivalent description of our model in terms of two scalar fields 
is discussed in Appendix D. We find that the higher order curvature term ∼ CR2 only affects 
the remote past of the universe before observable density fluctuations left the inflationary hori-
zon. We refer the discussion of the interesting properties of the infinite past, where the higher 
curvature terms play a role, to Appendices C and D.

For our discussion of the “observable epoch” of inflation we can omit the higher order cur-
vature invariants (3). As an example, we start with σ = 1 and approximate χ 
 m, B = m/χ . 
The primordial epoch will correspond to an inflationary universe and we can neglect matter and 
radiation. The cosmon field equation obtains by variation of the effective action (2) and reads [4]

χ̈ +
(

3H + 1

2

χ̇

χ

)
χ̇ = 2μ2χ2

m
. (24)

Here we have inserted the expression for R according to the gravitational field equation. The 
Hubble parameter is given by

H =
√

μ2

3
+ mχ̇2

6χ3
− χ̇

χ
. (25)

The evolution of the mean value of the inflaton and geometry until the end of inflation are de-
scribed by the two equations (24), (25).

We may use dimensionless variables y = mt, w = χ/m, h = H/m, λ = μ2/m2, such that



C. Wetterich / Nuclear Physics B 897 (2015) 111–178 123
∂2
yw + (3h + 1

2
∂y lnw)∂yw = 2λw2,

h =
√

λ

3
+ (∂yw)2

6w3
− ∂y lnw. (26)

One finds an approximate solution that approaches a constant h for w → 0

h =
√

λ

3
− 5

6(yc − y)
,

w = w0(y) + w̄1

(yc − y)2
. (27)

The function w0(y) vanishes in the infinite past for y → −∞,

w0 = 1

2

√
3

λ
(yc − y)−1, (28)

and yc, w̄1 integration constants. Restoring dimensions yields in leading order

H = μ√
3

, χ =
√

3m

2μ(tc − t)
. (29)

We conclude that time can be continued in this approximation to the infinite past, t → −∞. 
In this limit geometry approaches de Sitter space and the cosmon field vanishes. The limiting 
solution H = μ/

√
3, χ = 0 is unstable, however. A small deviation χ increases with t accord-

ing to eq. (29) or (27), and the Hubble parameter decreases. Primordial cosmology describes 
an inflationary epoch. This will end if the increase of χ or decrease of H becomes too fast. 
A quantitative estimate for the end of inflation will be given later in the Einstein frame.

A similar qualitative behavior extends to other values of the anomalous dimension σ . For our 
second example σ = 2 we use B = m2/χ2, such that the field equations take the form

χ̈ + 3Hχ̇ = 2μ2χ3

m2
,

H =
√

μ2

3
+ m2χ̇2

6χ4
− χ̇

χ
. (30)

The leading order solution becomes now

H = μ√
3

, χ = 3
1
4 m

2
√

μ
(tc − t)−

1
2 . (31)

For σ > 1 one finds a decrease of χ towards the infinite past, cf. Appendix C, eq. (C.10),

χ ∼ (tc − t)
1
σ . (32)

We will see below that the solutions (29), (31) correspond to a standard inflationary scenario 
in the Einstein frame or “big bang frame”. Horizon crossing of the observable primordial fluctua-
tions occurs when χ/μ is already large, χ ≈ 1.5 ·104μ. For these values the relative contribution 
of higher order curvature invariants from eq. (3) is suppressed by a factor ∼ Cμ2/χ2, which is 
tiny for any moderate C. We can therefore indeed neglect such terms for the discussion of ob-
servable signals from inflation. Nevertheless, as χ becomes much smaller than μ for t → −∞, 
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the role of the higher order curvature invariants becomes important. We give more details of the 
behavior of cosmology in the infinite past in Appendix C. This includes the role of the higher 
order curvature invariants. For constant C �= 0 and σ < 2 the asymptotic solutions for the infinite 
past are extended to a whole family for which a constant Hubble parameter H = H0 is a free 
parameter.

We will show next that our crossover model predicts a rather large ratio between primordial 
tensor and scalar fluctuations. Since the value of the cosmon field χ (which plays the role of the 
inflaton) equals the dynamical Planck mass, the Lyth bound [37,38] plays no role in our setting 
of variable gravity [39].

3.2. Cosmon inflation

The association of primordial cosmology with an inflationary epoch is most easily understood 
in the Einstein frame. Also a quantitative discussion of the generation of primordial density 
fluctuations and the end of inflation is best done in this frame. With

g′
μν = χ2

M2
gμν , ϕ = 2M

α
ln

(
χ

μ

)
(33)

the quantum effective action (2) reads

� =
∫
x

√
g′
{
−1

2
M2R′ + V ′(ϕ) + 1

2
k2(ϕ)∂μϕ∂μϕ

}
,

V ′(ϕ) = M4 exp
(
−αϕ

M

)
. (34)

We identify M = 2.44 · 1018 GeV with the Planck mass and observe that the cosmon potential 
V ′ decays exponentially to zero [5,8]. The absence of an additional constant for ϕ → ∞ in the 
Einstein frame is a direct consequence of the vanishing ratio between potential and fourth power 
of the dynamical Planck mass, V/χ4 = μ2/χ2, for χ → ∞ in the freeze frame.

It has been advocated [3,4,40] that it is advantageous to use a field basis where the potential 
takes a fixed form while the detailed model information appears in the form of the coefficient 
of the kinetic term, the kinetial. The reason is that the association of the value of the scalar field 
with the value of the potential energy is universal for a standardized potential. This makes it easy 
to compare different models. For our choice of a standard exponential potential the slow roll 
parameter ε and η reflect indeed very simple properties of k(ϕ). We could choose α = 1 as far 
as inflation is concerned, but we prefer here a different value in order to match the notation of 
quintessence potentials for late cosmology.

The kinetial k is related to B by

k2 = α2B

4
. (35)

Since the parameter α appears only in the definition of ϕ, eq. (33), one is free to choose it at will 
and we could indeed have set α = 1. Instead, we find it convenient to adopt a definition of α such 
that the field ϕ has a standard normalization for the present cosmological epoch, k2(ϕ0) = 1, or

α2 = 4 ≈ 4κ ln(M/m). (36)

B(χ = M)



C. Wetterich / Nuclear Physics B 897 (2015) 111–178 125
Typical values of α will be around ten or somewhat larger, see below. The normalization of ϕ
and the precise value of α do not matter for the physics of inflation, however. For χ → 0 eq. (21)
yields

B =
(

m

μ

)σ

exp
{
−σαϕ

2M

}
. (37)

A slow roll period for inflation is realized for large enough k2. We consider here a general 
function B(χ) and specialize to eq. (21) later. The usual slow roll parameters ε and η obtain as 
[3,4]

ε = α2

2k2
= 2

B
, η = 1

B
(4 − σ) , σ = −∂ lnB

∂ lnχ
. (38)

Inflation ends when ε or |η| are of order one. We define the end of inflation by the field value χf

determined by B(χf ) = 6, with εf = 1/3, ηf = 2/3 − σ/6. This is the value where the kinetic 
term in eq. (2) changes sign. Inflation is realized for a rather generic shape of the function B(χ). 
It is sufficient that B is large enough for small χ in order to induce an epoch of slow roll, and 
that B − 6 reaches negative values as χ increases in order to end inflation.

The definition of σ employed in the present section, given by eq. (38), differs slightly from 
the preceding section. In the present section, σ is considered as a function of χ . It agrees with 
the parameter σ in the preceding section for χ → 0. For the inflationary period this difference is 
minor (except possibly for the end of inflation), justifying the use of the same symbol.

3.3. Spectral index and tensor ratio of primordial fluctuations

The spectrum of primordial scalar density fluctuations is characterized by the spectral index 
n = 1 − 6ε + 2η, while the relative amplitude of tensor fluctuations over scalar fluctuations reads 
r = 16ε. Here ε and η have to be evaluated for the value of χ at horizon crossing, N e-foldings 
before the end of inflation. One finds the relations

r = 32

B(N)
, 1 − n = r

8

(
1 + 1

2
σ(N)

)
. (39)

We observe an interesting general relation between n and r . Horizon crossing occurs in the region 
χ 
 m, B 	 6. The particular models with σ = 1, σ = 2 or σ = 3 predict

1 − n = 3r

16
,

r

4
,

5r

16
, (40)

respectively. For a spectral index n = 0.97 this implies a rather high amplitude, r = 0.16, 0.12,

0.096, in the range claimed originally by BICEP [41]. In the view of recent CMB-results [42,43]
the range σ > 2 seems to be preferred as compared to the range σ < 2.

We next compute the relation between the value of χ(N) at horizon crossing and the number 
N of e-foldings before the end of inflation,

N = 1

αM

ϕf∫
ϕ

dϕ′k2(ϕ′) = 1

2

χf∫
χ(N)

dχ

χ
B(χ). (41)

In the range of interest B(χ) is typically a strongly decreasing function. The integral is dominated 
by the region around χ(N) where we may approximate B = (m/χ)σ(N). This relates B(N) =
B
(
χ(N)

)
to N ,
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Table 1
Properties of primordial fluctuations for different values of σ, N = 60.

σ 1 2 3

n 0.952 0.967 0.973
r 0.254 0.13 0.087

N = B(N) − B(χf )

2σ(N)
. (42)

With B(χf ) = 6 one finds

r = 16

Nσ(N) + 3
(43)

and

n = 1 − 2 + σ(N)

Nσ(N) + 3
. (44)

These two central formulae express both n and r in terms of σ(N) and N .
For the particular model with σ = 1 one obtains B(N) = 2N + 6 and predicts

r = 16

N + 3
, 1 − n = 3

N + 3
, (45)

while σ = 2 yields

r = 16

2N + 3
, 1 − n = 4

2N + 3
, (46)

and σ = 3 results in

r = 16

3N + 3
, 1 − n = 5

3N + 3
. (47)

We show the spectral index and the tensor ratio as a function of σ for various N in Figs. 2, 3.
We will see below that N depends only very mildly on σ . Its precise value shows some 

influence of the details of the entropy production after the end of inflation. A typical value is 
N = 60. For a given N both n and r are uniquely determined by σ . More precisely, σ = σ(N) is 
defined in terms of the function B(χ) by

σ = −∂ lnB

∂ lnχ |
B=2σN+6

. (48)

Thus only the logarithmic derivative of lnB at a particular value of B matters for the computation 
of n and r! For N = 60 we display the values of n and r for three values of σ in Table 1.

We can use eqs. (43), (44) in order to relate r to 1 − n. Within the relation

r

8
= 1 − n − 1

N + 1
− 1

(N + 1)2

(
1 − 3

σ(N)

)
(49)

we can use the lowest order relation for σ(N), evaluated for N = 60,

3

σ(N)
= 90(1 − n) − 1.5. (50)
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Fig. 2. Tensor ratio r for primordial fluctuations as function of the anomalous dimension σ . The curves from top to down 
are for N = 55, 60, 65. We also show the result for eq. (83) which almost coincides with N = 60.

Fig. 3. Spectral index n for primordial fluctuations as function of the anomalous dimension σ . The curves from top to 
down are for N = 65, 60, 55. We also show the result of eq. (83) which almost coincides with N = 60.

This yields

r = 8.193(1 − n) − 0.1365 + 0.0021(N − 60). (51)

For n = 0.97 this predicts r = 0.109, while for n = 0.965 (0.975) one has r = 0.15 (0.068). An 
upper bound on r � 0.1 prefers a value of n close to one, n � 0.97, corresponding to σ � 2.5.

We conclude that our model can be falsified by precision observations of the CMB. Since 
inflation lasts for an extremely long time before horizon crossing of the observable fluctuations, 
perhaps even since the infinite past, there seems to be no issue that memory of the initial con-
ditions could spoil its predictivity [44,45]. If r and n can be established in accordance with the 
relation (51) this will constitute a measurement of the anomalous dimension σ . Hopefully, this 
anomalous dimension is computable in quantum gravity, leading to a direct observational test.

The relation (51) is approximately valid for a large class of inflationary models beyond our 
particular setting. The slow roll parameters ε and η only involve the value and the derivative of 
the kinetial at the value of ϕ corresponding to horizon crossing of the observable fluctuations. 
The relation (51) follows qualitatively whenever the ϕ′-integral in eq. (41) is dominated by the 
large value of k2 at ϕ, while the decrease of k2 is well approximated by its first derivative. 
Within eq. (42) the model-uncertainty can be cast into values of B(χf ) deviating from the value 
B(χf ) = 6 for our setting.
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3.4. Amplitude of primordial fluctuations

The amplitude of the primordial scalar fluctuations can be related to the value of the potential 
at horizon crossing and the tensor to scalar ratio

A= Vout

rM4
= 3.56 · 10−8, (52)

where the last equation employs the observed amplitude of the spectrum of CMB-anisotropies. 
This measurement determines the ratio

m

μ
= χ(N)

μ

m

χ(N)
= M2

√
Vout

m

χ(N)
= 1√

Ar

m

χ(N)
. (53)

We next employ the approximate form B = (m/χ)σ or

m

χ(N)
= B(N)

1
σ(N) =

( r

32

)− 1
σ(N)

, (54)

such that

m

μ
= 1

4
√

2A
B(N)

1
2 + 1

σ(N)

= 2
1

σ(N)
−2(

Nσ(N) + 3
) 1

2 + 1
σ(N)A− 1

2 . (55)

For the particular model with σ = 1 one finds

m

μ
= (N + 3)

3
2

2
√
A

= 1.32 · 106
(

N

60

) 3
2

. (56)

For the constant ct in eq. (18) one infers

ct = ln

(
m

μ

)
= 14.1. (57)

(For the numerical value we have taken N = 60, see below.) Due to the exponential dependence 
on ct no very large or small parameter is needed in order to obtain a small fluctuation amplitude

A= (N + 3)3

4
e−2ct . (58)

The flow equation (15) generates the scale m by dimensional transmutation. The small amplitude 
A indicates that this scale is larger than the “intrinsic scale” μ. The situation is similar for other 
values of σ . For σ = 2 the ratio m/μ decreases by a factor 1/

√
30 as compared to σ = 1. For 

σ = 3 one has

m

μ
= 21/3

4

[
3(N + 1)

] 5
6 A−1/2 (59)

and

ct = 11.8. (60)

We may turn this argument around and state that crossover models provide for a natural ex-
planation of a small fluctuation amplitude A. We can relate the dimensionless cosmon potential 
V/μ4 = χ2/μ2 to a dimensionless flow parameter by
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μ̃ = ln

(
μ

χ

)
= −1

2
ln

(
V

μ4

)
. (61)

We have associated the scale m with the crossover value μcr where the flow moves away from 
the behavior dictated by the “past fixed point” for μ̃ → ∞,

m

μ
= e−μ̃cr . (62)

Different trajectories (solutions of the flow equations) can be characterized by how close to the 
fixed point they are for μ̃ = 1. The larger m/μ, the closer a trajectory is to the fixed point. In view 
of the exponential behavior of eq. (62), already moderate negative values of μ̃cr are sufficient to 
induce large values of m/μ, and therefore a small amplitude A ∼ (μ/m)2 ∼ e2μ̃cr .

We may also evaluate the dimensionless ratio

V

χ4
= μ2

χ2
= e2μ̃. (63)

For χ = m this quantity measures the potential in units of the Planck mass at the crossover. For 
many of our models the corresponding scale of the potential in the Einstein frame V

1
4 is of the 

order where spontaneous symmetry breaking is expected in a grand unified theory. This suggests 
that the crossover could be associated with grand unified symmetry breaking.

Finally, we may compare the value of χ(N) at horizon crossing with m using eq. (54),

x(N) = χ2(N)

m2
=
( r

32

) 2
σ

. (64)

For all models one finds a small value x(N) 
 1, justifying the approximation (5). On the other 
hand, we observe that χ(N) is much larger than μ, cf. eq. (53)

χ2(N)

μ2
= 1

Ar
. (65)

A simple picture arises. Horizon crossing happens when χ is already much larger than μ, but 
still smaller than m. Inflation ends when χ reaches m.

3.5. Horizon crossing

We finally need to evaluate the value of N for our type of crossover models. We present here 
a detailed treatment that allows one to estimate where various uncertainties come from. Horizon 
crossing of a mode with comoving wave vector k occurs for

k = aoutHout = ainHin, (66)

where aout or ain corresponds to the scale factor when the mode leaves the horizon after inflation 
or enters again in the more recent past.

We use

1 = aoutHout

ainHin
= aout

af

af

ar

ar

ain

Hout

Hr

Hr

Hin
, (67)

with af and ar the scale factors at the end of inflation and at a time when the universe begins 
to be dominated by radiation, respectively, and Hr = H(ar). For aout/af = e−N one finds the 
relation
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N = ln

(
Hr

Hin

)
+ ln

(
Hout

Hr

)
− ln

(
ain

ar

)
− ln

(
ar

af

)
. (68)

Neglecting entropy production for photons for a > ar we use ain/ar = Tr/Tin with T the photon 
temperature. We relate T to the total energy density in radiation

ρr = 3M2H 2
r = frT

4
r , ρ

(γ )

in = 3M2H 2
in�

(γ )

in = finT
4

in, (69)

with �(γ ) the photon fraction of energy density and fr(fin) the number of degrees of freedom 
in radiation (photons). These relations allow us to express ain/ar in terms of Hin and Hr . We 
further approximate Hout/Hf ≈√Vout/Vf = χf /χ(N), resulting in

N = 1

2
ln

(
Hout

Hin

)
− 1

4
ln

(
fin

fr�
(γ )

in

)
+ 1

4
ln

(
Vout

Vf

)
+ 	N,

	N = 1

2
ln

(
Hf

Hr

)
− ln

(
ar

af

)
. (70)

We first evaluate N0 for modes that come into the horizon today, and subsequently extrapolate 
to larger k. The dominant contribution is the first term ∼ ln(Hout/Hin). We can relate Hout to the 
tensor amplitude of the primordial fluctuations

3M2H 2
out = Vout =Ar(N0)M

4, (71)

and use 3M2H 2
in = ρc = (2 · 10−3 eV)4, which yields

Hout

Hin
= 1.5

√
Ar · 1060. (72)

With �(γ )

in = 5 · 10−5 and fr/fin = 100 one has ln(fr�
(γ )

in /fin)/4 = −1.3. (Note that the ne-
glected entropy production for photons can be incorporated into a modification of the poorly 
known ratio fr/fin.) With lnA/4 = −4.3 from eq. (52) we obtain

N0 = 63.7 + 1

4
ln r + 1

4
ln

(
Vout

Vf

)
+ 	N. (73)

The two last terms involve the details of the epochs between aout and af , or between af and ar , 
respectively.

For an estimate of Vf we employ B(χf ) = 6 and eq. (21),

ln
(χf

m

)
= 1

6κ
− ln 6

σ
,

Vf

M4
= μ2

χ2
f

. (74)

With eq. (54) one finds

Vout

Vf

= χ2
f

χ2(N)
= exp

(
1

3κ

)(
3r

16

)− 2
σ

, (75)

or

N0 = 63.7 + 1

12κ
+ 0.84

σ
+ 1

4

(
1 − 2

σ

)
ln r + 	N, (76)

with r depending on N and σ according to eq. (43). Inserting N0 ≈ 65 in the subleading term 
∼ ln r , and κ = 1 (see below) yields for σ = 1(σ = 2)
2
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N0 = 65.1(64.3) + 	N. (77)

The remaining piece 	N reflects the details of entropy production between the end of inflation 
(af ) and the beginning of the radiation dominated universe (ar). We may parametrize this epoch 
by two parameters, the number of e-foldings Nfr for the duration of this period

Nf r = ln
ar

af

, (78)

and the averaged equation of state w̄ which governs the evolution of the total energy density,

∂tρ = −3H(1 + w̄)ρ. (79)

With

ρ = ρ̄a−3(1+w̄) = 3M2H 2 , Ha2 ∼ a
1−3w̄

2 , (80)

one finds

	N = 3w̄ − 1

4
Nf r . (81)

For a fast entropy production Nfr is of the order one. The parameter w̄ is a suitable average of 
a function w(a) that starts close to w(af ) ≈ −1 for a = af , may then be given for a period of 
domination of scalar kinetic energy, w(a) ≈ 1, and finally end with w(ar) ≈ 1/3. For not too 
large Nf r and w̄ close to 1/3 one may simply neglect 	N , and we will use this approximation 
in the following.

We may finally extrapolate to modes with present wavelength smaller than the horizon. As 
compared to N0 the dominant correction factor is

N = N0 + δN,

δN = ln

(
H0a0

Hinain

)
= ln

k0

k
= − ln

L0

L
, (82)

with k and L the wave number or wave length of the mode, and index zero denoting the ones cor-
responding to the present horizon (L0 ≈ 3000 Mpc). In the range where primordial gravitational 
waves may be detected (k/k0 ≈ 80) one has δN ≈ −4.4, such that a reasonable overall estimate 
is

N ≈ 60 − 0.8(σ − 2). (83)

We can neglect the σ -dependence of N and use N = 60. Up to small calculable corrections for 
σ �= 2 this entails the predictions

r = 0.26

σ

n = 1 − 0.065

σ
·
(

1 + σ − 2

4

)
. (84)

In particular, one obtains for σ = 2

r = 0.13 , n = 0.967, (85)

in accordance with the prediction in Ref. [46] (see also Refs. [47–49]). For σ = 1 one finds 
r = 0.25, n = 0.953.
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Due to the dependence of N on the wave number k the spectral index and tensor amplitude 
depend on k according to

∂r

∂ lnk
= − ∂r

∂N
= r2

16

(
1 + ∂σ

∂ lnN

)
, (86)

∂n

∂ lnk
= − ∂n

∂N
= − r(1 − n)

16

(
1 + ∂σ

∂ lnN

(
1 − σ − 3

N

))
.

Since |∂σ/∂ lnN | is typically of the order one or smaller the running of the spectral index is very 
slow. Indeed, for our model σ changes over 60 e-foldings only from σ(N) to

σf = −∂ lnB

∂ lnχ |B=6
≈ κB ≈ 3, (87)

and this change occurs towards the end of inflation. We conclude that our UV-fixed point scenario 
provides for a rather simple and predictive model of inflation.

4. Late cosmology and dark energy

The crossover in the kinetial K(χ) = B(χ) − 6 from positive to negative values triggers the 
end of the inflationary slow roll solution. Subsequently, radiation and entropy are produced by 
various mechanisms [3,47]. We recall that during the crossover the dimensionless couplings and 
mass ratios of the standard model of particle physics are supposed to change from their values 
for the past fixed point to the ones for the standard model fixed point. In particular, the effective 
quartic cosmon-Higgs-coupling εH could be much larger than the tiny value for the standard 
model fixed point. A fluctuating Higgs doublet or a similar field related to spontaneous symmetry 
breaking in a grand unified setting could play a major role for the heating [3]. More precisely, 
a χ -dependence of εH results in the Einstein frame in an effective coupling between the cosmon 
and the Higgs doublet. This generalizes to other χ -dependent dimensionless couplings. In a grand 
unified theory the heating period may be associated with the onset of spontaneous symmetry 
breaking of the GUT-gauge group. Rather generically, the χ -dependence of couplings is large 
precisely in the crossover region. Thus at the end of inflation the cosmon coupling to other 
particles is large in the Einstein frame, in contrast to the tiny couplings close to the standard 
model fixed point. The large couplings provide for rather efficient heating mechanisms.

After the heating and entropy production have occurred the universe enters its “late epoch”, 
beginning with radiation domination. The late universe is characterized by the approach to the 
future fixed point. During the radiation and matter dominated periods this approach is slow, as 
accounted for by the (approximate) standard model fixed point, recall Fig. 1.

In the freeze frame the particle masses increase with increasing χ , while the universe shrinks, 
in contrast to the usual big bang picture [46]. (For early cosmological models with varying par-
ticle masses see Refs. [50–52].) Indeed, only the dimensionless ratio of the distance between 
galaxies divided by the atom radius is observable [53–56]. The overall picture of late cosmol-
ogy in the freeze frame has been described in detail in Ref. [4] for the case where the kinetial 
takes a constant value K∞ = B∞ − 6 at the IR-fixed point. Radiation and matter domination 
are characterized by a negative constant Hubble parameter H = bμ, while particle masses in-
crease exponentially, χ ∼ exp(cμt). The characteristic time scale for both epochs is given by 
μ−1 = 1010 yr, such that the evolution is always very slow. Temperature increases T ∼ √

χ due 
to the shrinking of the universe. Particle masses mp ∼ χ increase even faster, however, such that 
the relevant ratio T/mp decreases as in the usual big bang picture.
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In the present crossover model B depends only mildly on χ for χ 	 m,

B = 1

κ ln
( χ

m

) . (88)

The cosmology with constant B∞ = B(χ → ∞) = 4/α2 is therefore a good approximation. 
A priori, both the behavior (88) and a small fixed value of B∞ are perfectly viable candidates for 
realistic late cosmology. In the present paper we supplement the earlier discussion with constant 
B∞ by a quantitative investigation of a slowly varying B(χ) according to eq. (88). We employ 
the Einstein frame in order to facilitate the embedding of this model in standard scenarios of 
quintessence.

4.1. Late cosmology in the Einstein frame

In the Einstein frame (34) the kinetial is given for late cosmology by

k2 = Mα

2κ(ϕ − ϕ̄)
=
(

1 + 2κ(ϕ − ϕ0)

Mα

)−1

, (89)

with ϕ0 the present value of the cosmon

ϕ0 = 2M

α
ln

M

μ
, ϕ̄ = 2M

α
ln

(
m

μ

)
. (90)

With the exponential potential (34), this is a typical model of dynamical dark energy. (The diver-
gence for ϕ → ϕ̄ is outside the vicinity of the approximation.) Except for neutrinos the standard 
model particles and dark matter do not couple to ϕ. The cosmon field equation

k2(ϕ̈ + 3Hϕ̇) + 1

2

∂k2

∂ϕ
ϕ̇2 = αM3 exp

(
−αϕ

M

)
+ β

M
(ρν − 3pν) (91)

involves, however, the cosmon–neutrino coupling

β(ϕ) = −M
∂ lnmν(ϕ)

∂ϕ
, (92)

with mν the ϕ-dependent average neutrino mass. The coupling β is large only in the range of ϕ
which corresponds to the second step of the crossover (CR2 in Fig. 1). It plays no role as long as 
neutrinos are relativistic.

The Hubble parameter obeys

H 2 = ρ

3M2
, ρ = ρh + ρr + ρm + ρν, (93)

with

ρh = V + k2

2
ϕ̇2 , ph = −V + k2

2
ϕ̇2, (94)

and ρr,m,ν the energy densities of radiation, matter and neutrinos, respectively. While ρr and 
ρm obey the usual conservation equations, ρ̇r = −4Hρr, ρ̇m = −3Hρm, the neutrinos exchange 
energy momentum with the cosmon due to the variable mass



134 C. Wetterich / Nuclear Physics B 897 (2015) 111–178
ρ̇ν + 3H(ρν + pν) = − β

M
(ρν − 3pν)ϕ̇,

ρ̇h + 3H(ρh + ph) = β

M
(ρν − 3pν)ϕ̇. (95)

(The second equation follows from eqs. (91), (94).)
We may follow the evolution in terms of y = lna + y0 instead of time [7,57,58],

∂y lnV = − α

M
∂yϕ = −α

√
6(�h − �V )

k2
,

∂y lnρh = −6

(
1 − �V

�h

)
+ γ̃ (1 − 3wν)

�ν

�h

∂y lnV,

∂y lnρν = −3(1 + wν) − γ̃ (1 − 3wν)∂y lnV,

∂y lnρr = −4 , ∂y lnρm = −3, (96)

with �V = V/ρ, �r,m,ν,h = ρr,m,ν,h/ρ, wν = pν/ρν . The parameter

γ̃ = −β/α (97)

may depend on ϕ. Evaluated at the present value of ϕ it is the same as in eq. (23). It will deter-
mine the precise timing of the crossover to dark energy domination. The system of differential 
equations (96) can be solved numerically [7].

As long as neutrinos are relativistic one has wν = 1/3 and the terms ∼ γ̃ can be ne-
glected. For the radiation dominated epoch we can neglect ρm and incorporate ρν into ρr, ρr =
ρ̄rM

4 exp(−4y). For the matter dominated period neutrinos can be neglected as long as they are 
relativistic, similar to radiation. We only need to keep ρm = ρ̄mM4 exp(−3y). We may combine 
the discussion of these periods by taking ρd = ρ̄M4 exp(−ny) for the energy density of all other 
components except the cosmon, with n = 4(3) for radiation (matter) domination.

The last epoch in the cosmological evolution starts when neutrinos become non-relativistic. 
The terms proportional to the cosmon–neutrino couplings β in eq. (95) can no longer be ne-
glected. For large enough γ̃ they stop effectively the further change of ϕ, such that V ′(ϕ) acts 
like a cosmological constant. This scenario of “growing neutrino quintessence” [6,7,59–62] re-
lates the present dark energy density to the average neutrino mass

ρ
1
4
h (t0) = 1.27

(
γ̃ mν(t0)eV

) 1
4

10−3 eV. (98)

(Here γ̃ is evaluated today.) A realistic present dark energy fraction �h(t0) ≈ 0.7 is found for

γ̃ mν(t0) = 6.15 eV. (99)

This relation remains valid with good accuracy even in presence of the large scale non-linear 
neutrino lumps that form and dissolve periodically after redshift z ≈ 2 [63].

4.2. Approximate analytic solution

For a constant kinetial k = 1 one finds for radiation or matter domination the standard scaling 
(tracker) solution for quintessence with an exponential potential [5]. For slowly varying k(ϕ)

according to eq. (89) we may therefore use the approximation of a solution in the vicinity of the 
scaling solution. The difference between the cosmon field according to a model with ϕ-dependent 
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kinetial on one side, and the scaling solution on the other side, is denoted by Mδ(y). We will 
derive next an approximate analytic solution for δ(y). The resulting time evolution of the early 
dark energy fraction is found as

�h = nB(χ)

4
, (100)

instead of �h = nB∞/4 in case of a constant kinetial. Since B(χ) changes only very mildly for 
recent cosmology the results [7] of investigations with constant B∞ continue to be a very good 
approximation.

For the evolution equations for ϕ and lnρh we make the ansatz

ρh = f (ϕ)ρd , ϕ = M
(ny

α
+ δ(y)

)
, (101)

such that

∂y lnf = n − 6 + 6

f ρ̄
exp(−αδ),

∂yδ = −n

α
+
√

6f

k2(1 + f )

(
1 − 1

f ρ̄
exp(−αδ)

)
. (102)

For constant k2 one recovers the scaling solution [5,8,64] with a constant fraction of early dark 
energy �e, δ = 0, ∂yf = 0,

ρ̄ = 6

(6 − n)f
, �e = f

1 + f
= nk2

α2
. (103)

For a smooth enough ϕ-dependence of k2 we therefore expect a behavior close to this scaling 
solution. We employ

1

f
=
(

1 − n

6

)
ρ̄ exp

[−αζ(y)
]

(104)

and find

∂yζ = 6 − n

α

(
exp
[−α(δ + ζ )

]− 1
)
,

∂yδ = −n

α
+
√

n�h

k2

√
1 +

(
6

n
− 1

)(
1 − exp

[−α(δ + ζ )
])

, (105)

with

�h(y) = f (y)

1 + f (y)
. (106)

For the variables

	 =
(

6

n
− 1

)(
1 − exp

[−α(δ + ζ )
])

,

u = 1 − α2�h

nk2
(107)
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one obtains

∂y	 = [6 − n(1 + 	)
](√

(1 + u)(1 + 	) − 1 − 	
)
,

∂yu = (1 + u)

{
M∂ lnk2

∂ϕ

(n

α
+ ∂yδ

)
− α�h

1 + f
∂yζ

)
. (108)

At this point we assume that (nM/α)∂ lnk2/∂ϕ is small. We can then expand in small 	 and u,

∂y	 = n − 6

2
(	 − u),

∂yu = nM

α

∂ ln k2

∂ϕ
− n�h(1 − �h)	. (109)

With ∂ ln k2/∂ϕ and �h varying slowly the solution approaches the particular approximate 
solution

	̄ = ū = M

α�h(1 − �h)

∂ ln k2

∂ϕ
. (110)

Indeed, if we neglect the y-dependence of 	̄ and ū one has for u′ = u − ū, 	′ = 	 − 	̄ the linear 
evolution

∂y

(
	′

u′

)
= A

(
	′

u′

)
,

A = n − 6

2

(
1, −1

−2n�(1−�)
n−6 , 0

)
. (111)

The eigenvalues of the stability matrix A are both negative, implying an exponential decrease of 
	′ and u′ as y increases. We conclude that cosmology approaches a solution with non-vanishing 
early dark-energy fraction decreasing with decreasing k2,

�h = nk2

α2
(1 − ū). (112)

Solving eqs. (112), (110) for �h we end with a general formula for slowly varying k(ϕ),

�h ≈ nk2

α2
−
(

1 − nk2

α2

)−1
M

α

∂ ln k2

∂ϕ
. (113)

Here we recall that for generic models of quintessence the formulation with exponential potential 
(34) and possibly varying kinetial k(ϕ) can be obtained by an appropriate rescaling of the scalar 
field.

Let us now turn to our model with k2 = Mα/
(
2κ(ϕ − ϕ̄)

)
and

∂ lnk2

∂ϕ
= − 1

ϕ − ϕ̄
= −2κk2

Mα
. (114)

One has

ū = − 2κ

n(1 − �h)
, (115)

and for �h 
 1 a small parameter κ 
 1 indeed implies ū 
 1. In turn the early dark energy 
fraction
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�h = n

2κ

M

α(ϕ − ϕ̄)
= n

2κ ln
(

χ2

m2

) = nB(χ)

4
(116)

decreases logarithmically for increasing χ .

4.3. Bounds on parameters

Besides the determination of γ̃mν(t0) by a measurement of the present dark energy fraction 
(99) we can use bounds on early dark energy for an estimate of the parameter κ .

For nucleosynthesis the dimensionless ratio V/χ4 = μ2/χ2 = V ′/M4 is of the order 
(MeV)4/(1018 GeV)4 ≈ 10−84. With m2/μ2 ≈ 107 this implies ln(χ/m) ≈ 89,

�
(ns)
h ≈ 1

89κ
. (117)

If we require κ < 1/2 in order to maintain small ū this yields a dark energy fraction larger than 
2% which could be detectable in the future [8,65,66].

For the present epoch one has

V ′(ϕ0)

M4
= μ2

M2
=
(

2 · 10−3 eV

2.44 · 1018 GeV

)4

= (0.67 · 10−60)2. (118)

This sets the scale of our model

μ = 1.64 · 10−33 eV, (119)

similar to the present value of the Hubble parameter. With ln(M/μ) ≈ 138.55, ln(m/μ) ≈ 16.1
one has ln(M/m) = 122.4 and therefore

α2 = 490κ. (120)

Interestingly, for κ < 1/2 one finds an upper bound on α, α < 15.6.
Over the restricted range since last scattering k2 has changed only little

k−2(z) = 1 − 6κ

α2
ln(1 + z), (121)

such that at last scattering the relation �h ≈ 3/α2 � 1/80 is valid,

�ls
h = 3

490κ
. (122)

For κ < 0.5 the model therefore predicts a lower bound on the fraction of dark energy at last 
scattering

�ls
h ≥ 0.012. (123)

This is at the borderline of a possible detection with present observations [31–36,67]. One there-
fore infers the bound κ � 0.5. We may take a value κ = 0.5 which is compatible with observation 
and consistent with our approximate solution with small ū.

Formally, we may combine eqs. (112), (115), (120) in order to obtain for k2 ≈ 1,

n ≈ 3, �ls
h 
 1 the relation

�ls
h = 3 + 1

. (124)

490κ 245
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This would imply a minimal value for �ls
h , close to the lower bound quoted in Ref. [36]. (We 

recall, however, that the observational bound may change if the other ingredients of our model 
are included in the parameter estimation.) The minimum is reached, however, only for large κ for 
which our approximation no longer holds. We do not expect a qualitative change for somewhat 
larger values of κ . While the analytical estimate becomes inaccurate for κ � 0.5, a numerical 
solution can be extended easily to larger κ . It will be interesting to see if a saturation with a 
minimal value of �ls

h , as suggested by eq. (124), takes place for increasing κ . A lower bound on 
�ls

h would make the present model distinguishable from �CDM where �ls
h is practically zero.

In summary, the late cosmology of our model resembles closely growing neutrino quintessence 
with a variable cosmon–neutrino coupling β [7]. The interesting new features are an explanation 
of a large effective value for α in terms of the approach to the IR-fixed point, and the association 
of large positive γ̃ = −β/α with a crossover affecting the neutrino masses in the recent and 
present cosmological epoch.

5. Ultraviolet fixed point

The fixed point that is relevant for the infinite past t → −∞ (“past fixed point”) corresponds 
to χ → 0. It is characterized by an anomalous dimension σ that appears in the scalar kinetic 
term. (In the language of universal critical exponents σ corresponds to −η.) The approach to the 
fixed point corresponds to B−1 → 0, with limiting behavior of the flow equation (20) given by

μ∂μB−1 = −σB−1. (125)

At the fixed point scale symmetry is exact and not spontaneously broken. With all particle masses 
vanishing for χ → 0 the model contains only massless modes at the UV-fixed point. It is the 
existence of this fixed point that makes quantum gravity non-perturbatively renormalizable. We 
discuss here in more detail its possible properties.

5.1. Renormalized scalar field

The solution of eq. (125),

B =
(

m

χ

)σ

, (126)

contains an explicit mass scale m, in addition to the mass scale μ. (The ratio m/μ can be consid-
ered as a dimensionless coupling that specifies B besides the dimensionless parameter σ .) For 
σ �= 2 one can absorb m in the definition of a renormalized field

χR =
(

1 − σ

2

)−1
B

1
2 χ =

(
1 − σ

2

)−1
m

σ
2 χ1− σ

2 . (127)

For σ < 2 the UV-limit χ → 0 corresponds to χR → 0, while for σ < 2 this limit implies 
χR → −∞. In terms of the renormalized field the effective action contains a scalar kinetic term 
with standard normalization

� =
∫
x

√
g

{
1

2
∂μχR∂μχR + eσ |χR| 4

2−σ

(
μ2 − 1

2
R

)}
,

eσ =
∣∣∣1 − σ

∣∣∣ 4
2−σ

m− 2σ
2−σ . (128)
2
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For the particular case σ = 1 this yields (λ = μ2/m2)

� =
∫
x

√
g

{
1

2
∂μχR∂μχR + λ

16
χ4

R − χ4
R

32m2
R

}
. (129)

The last term ∼ R vanishes for χR/m → 0, such that no mass scale remains in this limit. We 
may define a dimensionless coupling

λ̃R = V

χ4
R

= μ2χ2

χ4
R

= μ2

m2

∣∣∣σ
2

− 1
∣∣∣− 4

σ−2

( |χR|
m

)− 4(σ−1)
σ−2

. (130)

For σ = 1 one has λ̃R = λ/16. For σ > 1 we distinguish two cases. For σ < 2 the UV-fixed point 
is realized for |χR| → 0. In this limit λ̃R goes to zero. The potential term becomes subleading and 
can be neglected in the UV-limit. With both V and χ2R neglected in the UV-limit the effective 
action contains indeed no mass scale. For σ > 2 the UV-fixed point is approached for |χR| → ∞. 
Again λ̃R vanishes in this limit and � does not involve a mass scale in the UV-limit. This behavior 
demonstrates scale invariance at the fixed point very explicitly. For the boundary case σ = 2 one 
finds a logarithmic dependence of χR on χ

χR = m ln
(χ

m

)
, χ2 = m2 exp

(
2χR

m

)
. (131)

The fixed point is now realized for χR → −∞ where both V/χ4
R and χ2R/χ4

R vanish. We 
conclude that for the whole range σ ≥ 1 the effective action describes an ultraviolet fixed point.

The scale symmetry realized at the fixed point is of a non-standard type due to the non-
vanishing anomalous dimension σ . While the renormalized scalar field χR scales proportional 
to mass, the original scalar field χ scales ∼ mass2/(2−σ). (For the example σ = 1 one finds a 
scaling of χ ∼ mass2.) Thus the effective action becomes invariant under the scaling

gμν → α2gμν , χ → α− 2
2−σ χ , χR → 1

α
χR. (132)

An interesting particular case is σ = 3 where χ scales with the same factor as the metric. The 
term ∼ R involves a scale symmetry violation which vanishes in the limit χ/m → 0. It charac-
terizes a relevant parameter for the deviation from the fixed point as χ increases. For σ = 1 the 
term ∼ μ2χ2 is invariant under the scaling (132), as easily visible in eq. (129). This situation 
changes for σ > 1, where the potential becomes a relevant deviation from the fixed point as well. 
As an example we may consider σ = 3/2 where χ scales ∼ mass4 and

� =
∫
x

√
g

{
1

2
∂μχR∂μχR + 2−16μ2 χ8

R

m6
− 2−17 χ8

R

m6
R

}
. (133)

The two last terms vanish in the limit χ/m → 0 and correspond both to relevant parameters for 
deviations from the fixed point. A second example is σ = 3,

� =
∫
x

√
g

{
1

2
∂μχR∂μχR + 16

m6

χ4
R

(
μ2 − 1

2
R

)}
, (134)

where χ/m → 0 is realized for χR → −∞. At the fixed point we are left for both examples 
with a free massless scalar field. This simplicity makes the existence of such a fixed point rather 
plausible.
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We observe that for σ < 1 the coefficient eσ decreases less than ∼ m−2 for m → ∞. As a 
consequence the dimensionless quantity λ̃R = V/χ4

R diverges for χ/m → 0. No fixed point is 
obtained in this case.

At the fixed point the term ∼ R vanishes. However, one may expect the presence of higher 
order invariants, as given by eq. (3). Such terms are scale invariant and therefore compatible with 
dilatation symmetry if the dimensionless quantities C and D are constant. (Slowly running C
and D would be considered as marginal parameters for deviations from the fixed point.) In the 
limit χ → 0 these terms dominate the graviton propagator and the graviton–graviton scattering 
at nonzero momentum [68].

It will be interesting to see by an actual calculation if a fixed point with the postulated 
properties exists. For the moment being our model only gives an illustration of the interesting 
cosmological consequences of such a fixed point. If an UV-fixed point is found to exist the im-
portant task will be the understanding of small deviations from the fixed point, as encoded in 
the behavior of β-functions close to their zeros. This will determine the coupling ∼ χ2R and, 
for σ > 1, the term ∼ μ2χ2, as well as the flow of couplings of the standard model of particle 
physics. We emphasize that a fixed point with the simple effective action (8) requires a substantial 
anomalous dimension σ > 1. In turn, this induces an inflationary stage and its end.

5.2. Gauge hierarchy

We will next address possible interesting consequences of an UV-fixed point for particle 
physics, in particular the gauge hierarchy problem. This concerns the possibility that the ef-
fective coupling εH between the Higgs-doublet and the cosmon, which determines the Fermi 
scale, is driven to very small values by its flow in the vicinity of the UV-fixed point.

The gauge hierarchy is related to the small value of the effective coupling εH which appears 
in the quantum effective potential for the Higgs doublet h̃ [3,4],

Ṽh = 1

2
λh(χ/μ)(h̃†h̃ − εh(χ/μ)χ2)2 , εH = λhεh. (135)

For the present range of χ the function εh(χ/μ) must be (almost) independent of μ and have 
reached a very small value εh(χ/μ = M/μ) = 5 · 10−33. Besides their dependence on χ/μ the 
functions λh and εH also depend on ĥ†h̃/χ2. This latter dependence is described by the standard 
model β-functions. The running of εH with ĥ†h̃/χ2 is given by a perturbatively small anomalous 
dimension [69,70]. We neglect this small effect and use εH ≈ 10−32 independently of h̃†h̃/χ2. 
(A small value of εH for a Higgs field value of the order of the dynamical Planck mass χ remains 
small for a Higgs field value equal to the Fermi scale. This property reflects the (almost) second 
order character of the electroweak phase transition – the associated effective scale invariance of 
the non-gravitational physics protects a small value of the Higgs mass term [69–76].) We explore 
here if the small value of εH can be caused by the running of εH near the UV-fixed point, before 
it is stopped at the crossover for χ ≈ m.

In order to understand this issue we first consider the effective renormalized quartic coupling 
for the cosmon for χ 
 m,

λR = 1

24

∂4V

∂χ4
R

, V = μ2eσ (μ)|χR| 4
2−σ , (136)

which differs from λ̃R in eq. (130) only by a multiplicative constant. From



C. Wetterich / Nuclear Physics B 897 (2015) 111–178 141
λR ∼
( |χR|

μ

) 4(σ−1)
2−σ ∼

(
χ2

μ2

)σ−1

(137)

we extract the flow equation

μ∂μλR|χ = −2(σ − 1)λR = AλλR. (138)

For σ > 1 one finds Aλ < 0 and the running coupling λR is asymptotically free in the ultraviolet. 
We observe that the anomalous dimension Aλ can be quite large. A given trajectory (model) can 
be specified by the value of λR at χ/μ = 1. This is typically a rather small value, corresponding 
to the close vicinity to the fixed point. For larger values of χ/μ the renormalized coupling λR

increases.
We next turn to the cosmon–Higgs coupling that we define as

εH = − ∂2Ṽh

∂(χ2)∂(h̃†h̃)
. (139)

The corresponding renormalized coupling

εR = − ∂2Ṽh

∂(χ2
R)∂(h

†
RhR)

(140)

involves χR and the renormalized Higgs doublet hR . Using B = (χ/m)σ , χR/χ = √
B/ 
(
1 − σ

2

)
, 

one has

∂(χ2
R)

∂(χ2)
= B

1 − σ
2

. (141)

Similarly, the kinetic coefficient Bh of the Higgs doublet may depend on μ in the vicinity of the 
UV-fixed point, resulting in

∂(h
†
RhR)

∂(h̃†h̃)
= Bh

1 − σh

2

, μ∂μ lnBh = σh. (142)

This relates εR and εH

εH = BBh(
1 − σ

2

) (
1 − σh

2

)εR. (143)

Let us now assume that εR is asymptotically free in the UV, similar to λR,

μ∂μεR = AεεR , Aε < 0. (144)

This results in a flow of εH according to

μ∂μεH = (Aε + σ + σh)εH = σεεH . (145)

(We take σ and σh approximately constant here.) While εR decreases with increasing μ, εH can 
increase if the sum σ + σh overwhelms the negative contribution Aε such that σε > 0,

εH ∼
(

μ

χ

)σε

. (146)

Turned around, εH will then decrease for increasing χ and fixed μ.
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The behavior (146) is valid only for the vicinity of the UV-fixed point for χ � m. For the 
vicinity of the standard model-fixed point, χ 	 m, we assume that εH reaches rapidly its constant 
fixed point value. (Formally σε ≈ 0 for χ 	 m.) Specifying the trajectory at a given ratio χin/μ, 
εin = εH (χin/μ), the value of εH for χ2 	 m2 is reduced by a factor

εH ≈
(χin

m

)σε

εin. (147)

This factor could explain the gauge hierarchy. For εin of the order one needs

χin

m
≈ 10− 32

σε . (148)

For example, for χin = μ a value σε ≈ 5–6 would be sufficient for a decrease of εH between 
χ = μ and χ = m by around 30 orders of magnitude. This would relate the smallness of the ratio 
Fermi scale/Planck mass and the small amplitude of primordial density fluctuations, cf. eq. (55),

〈h〉
M

∼Aσε/4. (149)

(For χin 
 μ smaller values of σε would be sufficient to achieve the suppression factor needed 
for the gauge hierarchy.)

The possible emergence of a gauge hierarchy, expressed by the tiny coupling εH(χ 	 m) ≈
10−32, can be viewed from different perspectives. While εH should be approximately constant 
for χ 	 m, nothing prevents an increase of εH for χ 
 m, such that values of the order one 
can be reached for small enough χ . The increase of εH towards the UV-fixed point remains 
compatible with an asymptotically free renormalizable coupling εR. For sufficiently small χ all 
asymptotically free renormalized couplings are very small. If the anomalous dimension |Aε| for 
the coupling εR is smaller than the corresponding one for other couplings the coupling εR still 
remains small at the crossover scale where the flow effectively stops and εR roughly equals εH .

The coupling εH measures the distance from the electroweak phase transition which is of 
second order (up to small QCD-effects). This guarantees that its flow vanishes for εH = 0. Such a 
setting generalizes to a large class of models, including grand unified models. Then εH measures 
the distance from the hyperface in coupling constant space corresponding the phase transition. 
While the location of this hypersurface may be complicated in a given basis for the couplings 
(often associated with a “fine tuning problem”) the general structure of the flow equation for εH

remains the same [77].
The two steps in the flow of εH , first a fast decrease for χ 
 m and then an almost constant 

behavior for χ 
 m, would realize an old idea for a possible explanation of the gauge hierarchy 
[69]. The necessary large values of anomalous dimensions are often found in the gravitational 
contribution to the flow [12–14,78]. In our scenario σ has to be large in order to realize an UV-
fixed point. Then also σε will typically have a large value, unless some particular cancellation 
occurs in eq. (145). Without an explicit computation of the μ-flow equation our discussion re-
mains an educated guess. It clearly shows, however, that an ultraviolet fixed point with large 
anomalous dimensions could play an important role for the gauge hierarchy problem. This also 
applies for a possible understanding of the value of the Higgs boson mass. If the flow of the 
quartic Higgs coupling λh(χ/μ) exhibits a large positive anomalous dimension the “asymptotic 
safety scenario for the Higgs boson mass” is realized [79], which has led to a predicted value 
mh ≈ 126 GeV with a few GeV uncertainties, the best value today being around 129 GeV.

It is an attractive speculation that extensions of our model which comprise the standard model 
of particle physics exhibit an ultraviolet fixed point for which all renormalized dimensionless 
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couplings are asymptotically free. The effective action at the fixed point comprises then only 
kinetic terms for the renormalized fields. Gravitational couplings as C may be marginal. Graviton 
fluctuations could be responsible for large anomalous dimensions.

6. Field relativity

Once quantum fluctuations are included on the level of the quantum effective action the cor-
responding field equations can be solved with arbitrary field variables. Values and correlations 
of physical observables are independent of the choice of fields used to describe them [53]. This 
exact property may be called “field relativity” [46]. Indeed, observables are expressed as func-
tionals of fields. Again, they can be written in terms of arbitrary field variables. In general, the 
specific functional expression for a given physical observable will be changed under a change of 
field variables (see Refs. [53,68] for the transformation of some quantities relevant for cosmol-
ogy as temperature or proper time). We stress that only dimensionless quantities can be physical 
observables [53]. Different choices of field variables are called different frames. A well known 
example for a frame transformation is the Weyl transformation from the Jordan to the Einstein 
frame [80,81] that we have employed in Section 3.

In the present section we employ frame transformations for several different purposes. We 
first show that a very large class of coupled scalar-gravity models can be brought to the form (2), 
with B(χ/μ) the only free function. Typically this holds if the field equations contain no more 
than two derivatives and the scalar potential is monotonic. A formal treatment of a large class 
of such models, including the ones of the Horndeski type [82], can be found in Ref. [83]. Our 
discussion of a crossover between a past and future fixed point can therefore be carried over to a 
large class of models.

We have described the crossover as a “kinetial crossover” where the relevant information is 
encoded in the scalar kinetic term, i.e. the function B(χ/μ). Field transformations can be used to 
express the same physics as a “potential crossover” [84], where the information is now contained 
in the shape of the scalar potential V (χ/μ), while the kinetic term has a standard normalization. 
We also present a “primordial flat frame” for which the cosmological solution approaches flat 
space in the infinite past for models without higher order curvature invariants. Finally, we cast 
the effective action into the form of a free scalar field coupled to gravity. While the kinetic 
term is standard and the potential quadratic, the crossover information is now contained in a 
χ -dependent function multiplying the curvature scalar. Having at hand the formulation of the 
ultraviolet and infrared fixed points in different frames may facilitate the search for such fixed 
points in a genuine quantum gravity calculation.

We omit in this section higher order curvature invariants as in eq. (3). They would have to be 
transformed appropriately under field transformations. This section therefore deals with various 
expressions for the quantum effective action encoded in eq. (2).

6.1. Field transformations within Jordan frames

We will call “Jordan frames” the choice of fields for which the curvature scalar in the effective 
action (2) is multiplied by χ2. We allow for a general potential V (χ) instead of μ2χ2 in eq. (2). 
In contrast, the “Einstein frame” or “big bang frame” (34) has a constant coefficient M2 in front 
of the curvature scalar. The Einstein frame is unique, up to a choice of the scalar field ϕ which 
may be replaced by χ or a field σ with standard normalization of the kinetic term. The Jordan 
frames, however, are not yet uniquely fixed, since there exist field transformations keeping the 



144 C. Wetterich / Nuclear Physics B 897 (2015) 111–178
term ∼ χ2R invariant, while changing V (χ) and B(χ). The particular choice of fields where 
V (χ → ∞) = μ2χ2 will be called “freeze frame”. We may parametrize the Jordan frames by 
two dimensionless functions B(χ/μ) and

v

(
χ

μ

)
= V (χ)

χ4
. (150)

Indeed, the most general quantum effective action with no more than two derivatives takes in the 
Jordan frame the form

� =
∫
x

√
g

{
−1

2
χ2R + v(χ)χ4 + 1

2

(
B(χ) − 6

)
∂μχ∂μχ

}
. (151)

The two functions B and v contain redundant information, since they can be changed by appro-
priate field transformations.

Using appropriate field transformations we can bring a large class of effective actions with 
up to two derivatives into the generic form (151). For any positive and monotonically increasing 
function F(χ ′) multiplying the graviton kinetic term −R we can choose a normalization of the 
scalar field F = χ2 in order to bring the system to the Jordan frame. We can then use the residual 
transformation within the Jordan frame in order to obtain v = μ2/χ2 such that B(χ) remains the 
only free function. Alternatively, we can obtain a constant scalar kinetic term at the prize of a 
more complicated function v.

Consider the transformation

χ = h(χ̃) , gμν = χ̃2

h2(χ̃)
g̃μν. (152)

This transforms the effective action (151) to

� =
∫
x

√
g̃

{
−1

2
χ̃2R̃ + ṽ(χ̃)χ̃4 + 1

2

(
B̃(χ̃) − 6

)
∂μχ̃∂μχ̃

}
, (153)

leaving the coefficient of the curvature scalar form-invariant. In terms of the variables χ̃ and g̃μν

the new functions B̃ and χ̃ read

B̃ = B
(
h(χ̃)

)( ∂ lnh

∂ ln χ̃

)2

,

ṽ = v
(
h(χ̃)

)
. (154)

A pair of functions (B̃, ṽ) describes the same model as the pair (B, v) if the two are related 
by eq. (154) with a suitable choice of h(χ̃). The corresponding effective actions are related by 
a field transformation. A given model can be expressed by a whole family of Jordan frames, 
parametrized by h(χ̃).

Of course, this equivalence also requires appropriate transformations in the particle physics 
sector. For example, preserving the canonical kinetic term for a fermion field ψ̃ requires

ψ =
(

h

χ̃

) 3
2

ψ̃. (155)

This implies that fermion masses ∼ χ̃ remain form-invariant under the rescaling, with the same 
dimensionless coupling f ,
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f
√

g̃χ̃
¯̃
ψψ̃ = f

√
gχψ̄ψ. (156)

The rescaling leaves the dimensionless ratio between fermion mass and Planck mass, m(χ̃)/χ̃ =
f , invariant.

6.2. Kinetial crossover

We can employ the field transformations (152) in order to bring a large class of potentials 
Ṽ (χ̃) to the “freeze form” V = μ2χ2. Indeed, any function ṽ(χ̃) which decreases monotonically 
with limits ṽ(χ̃ → 0) → ∞, ṽ(χ̃ → ∞) → 0 can be transformed to v = μ2/χ2 by choosing

h(χ̃) = μ√
ṽ(χ̃)

. (157)

The choice of the effective action (2) is therefore rather generic, since a large family of potentials 
can be brought to the particular form V = μ2χ2.

A first example takes a constant potential

Ṽ = λ̄c , ṽ = λ̄c

χ̃4
, h(χ̃) = μχ̃2√

λ̄c

. (158)

Eq. (154) yields

B = B̃

4
. (159)

This relates the large-χ -behavior of the two models (A) and (B) in Ref. [4].
As a second example we may consider the models of Ref. [68] (A, α = const.),

ṽ = μ2χ̃−A

m2−A + χ̃2−A
, B̃ = 4

α2
. (160)

With

h2 = (m2−A + χ̃2−A)χ̃A = χ2 (161)

one finds

B = B̃

(
1 + (2 − A)m2−A

Am2−A + 2χ̃2−A

)2

, (162)

where χ̃ is related to χ by eq. (161). For large χ/m one has χ = χ̃ , B = B̃ , while for χ → 0 the 
limiting behavior is

χ = m1− A
2 χ̃

A
2 , B = 4B̃

Ã2
= 4

α̃2
. (163)

For these models the flow equation for B exhibits two fixed points with finite values of B , e.g. 
4/α̃2 for μ → ∞ and 4/α2 for μ → 0. This is the type of models investigated in Refs. [4,46]. 
For μ → ∞ one has σ = −∂ lnB/∂ lnχ → 0. The renormalized scalar field χR equals χ̃ up to 
a constant factor, and V/χ4

R diverges for χR → 0. This is not a fixed point in the sense of our 
previous discussion, but it could represent a possible fixed point in terms of different variables.

As mentioned above, even much more general classes of models can be described by a kinetial 
crossover. In Appendix E we discuss models where the coefficient of the curvature scalar χ̃2 in 
eq. (153) is generalized to c1χ̃

2 + c2μ
2, and map such models to the kinetial crossover form (2). 

This will shed light on the role of a possible term ∼ μ2R for variable gravity models.
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6.3. Potential crossover

Alternatively, we may use the transformation (154) in order to transform our models (2), (21)
of a kinetial crossover to an equivalent model with a potential crossover. For this purpose we 
want to achieve a constant B̃, using for h a solution of the differential equation

∂ lnh

∂ ln χ̃
=
√

B̃

B(h)
. (164)

Once h(χ̃) = χ is computed in this way we can compute the associated scalar potential V (χ̃) =
χ̃4v

(
h−1(χ)

)
.

As an example we consider the effective action (2) with B(h) obeying eq. (18),

1

κB(h)
− lnB(h) = ln

(
h

m

)
. (165)

For small h or large B one has the limiting behavior

B−1 = h

m
(166)

or

∂ lnh

∂ ln χ̃
=
√

B̃h

m
. (167)

The solution of eq. (167) involves an integration constant ch

h = m

(
ch − 1

2

√
B̃ ln

(
χ̃

m

))−2

. (168)

This yields the potential

Ṽ = ṽχ̃4 = μ2χ̃4

h2
= μ2

m2

[
chχ̃ − 1

2

√
B̃χ̃ ln

(
χ̃

m

)]4

, (169)

which vanishes for χ̃ → 0

V (χ̃ → 0) = μ2B̃2

16m2

[
χ̃ ln

(
m

χ̃

)]4

→ 0. (170)

On the other hand, for large h and small B we use B−1 = κ ln
(

h
m

)
and therefore

∂ lnh

∂ ln χ̃
=
√

κB̃ ln

(
h

m

)
. (171)

The solution

h = m exp

{
κB̃

4

[
ln

(
χ̃

m

)
+ c̃h

]2
}

(172)

increases faster than χ̃ for χ̃ → ∞. The corresponding potential reads

Ṽ = μ2

m2
χ̃4 exp

{
−κB̃

2

[
ln

χ̃

m
+ c̃h

]2
}

. (173)
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The full potential makes a crossover from eq. (169) for χ̃ 
 m to eq. (173) for χ̃ 	 m. The 
two integration constants ch and c̃h are related in order to ensure a smooth matching, e.g. ch ≈
exp{−κB̃c̃2

h/8}.
One may also choose a hybrid setting with a constant kinetic term B̃ for χ → 0, while for 

χ → ∞ one keeps the freeze frame V = μ2χ̃2. This is achieved by choosing h(χ̃ → ∞) = χ̃ , 
while h(χ̃ → 0) is given by eq. (168).

6.4. Primordial flat frame

Let us consider the frame where for χ → 0 the functions ṽ and B̃ are related by

∂ ln ṽ

∂ ln χ̃
= −B̃(χ̃) + ∂ ln B̃

∂ ln χ̃
. (174)

This is the condition for finding for the infinite past flat space as a solution of the field equations 
derived from the action (153) [4]. We can transform our crossover model (2), (5) to this “primor-
dial flat frame” by a suitable choice of h in eq. (152). The function h(χ̃) has to obey a differential 
equation which follows from

ṽ = μ2

h2
, B̃ = B(h)

(
∂ lnh

∂ ln χ̃

)2

, (175)

namely(
2 + ∂ lnB

∂ lnh

)
∂ lnh

∂ ln χ̃
− B

(
∂ lnh

∂ ln χ̃

)2

+ 2
∂

∂ ln χ̃
ln

(
∂ lnh

∂ ln χ̃

)
= 0. (176)

We are interested in h → 0 where B = (m/h)σ , ∂ lnB/∂ lnh = −σ . In this approximation 
eq. (176) is obeyed by

∂ lnh

∂ ln χ̃
= (2 + σ)

(
h

m

)σ

. (177)

This yields the relation between χ and χ̃ ,

χ = h(χ̃) = m̂

(
ln

m̄

χ̃

)− 1
σ

,

m̂ = [σ(2 + σ)
]− 1

σ m, (178)

with m̄ an integration constant. One infers

ṽ = μ2

m̂2

(
ln

(
m̄

χ̃

)) 2
σ

(179)

and

B̃ = 2 + σ

σ ln
(

m̄
χ̃

) . (180)

In the primordial flat frame B̃ vanishes for χ̃ → 0 (which corresponds to χ → 0), in contrast 
to the divergence of B in the frame of eqs. (2), (5). The dimensionless potential ṽ = Ṽ /χ̃4
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diverges with an inverse power of a logarithm instead of v ∼ χ−2. Different frames can describe 
the same physical situation with rather different pictures. This extends to the form of the flow 
equations. For χ̃ → 0 one has

∂B̃

∂ ln χ̃
= σ

2 + σ
B̃2,

∂ṽ

∂ ln χ̃
= − 2

2 + σ
B̃ṽ. (181)

This transfers to the μ-flow equation for fixed χ̃ and g̃μν (instead of fixed χ and gμν )

μ∂μB̃ = − σ

2 + σ
B̃2 , μ∂μṽ = 2

2 + σ
B̃ṽ. (182)

On the level of a given quantum effective action the flow equations in different frames can be 
obtained from each other by a simple transformation of field variables. The quantum computation 
of the flow equations needs more care. One may employ a field transformation which leaves the 
functional integral invariant. It will involve, however, a Jacobian from the functional measure. 
In practice, a computation is often done with the implicit assumption of a unit Jacobian. This 
singles out a particular frame. Two settings for which the “classical action” is related by a field 
transformation, while both use the same definition of the measure for the respective fields (e.g. 
unit Jacobian), result in different models that do not yield equivalent predictions for observations. 
In other words, it is sufficient for the UV-fixed point of our model that there exists a frame for 
which a quantum computation with unit Jacobian yields the flow equation (182) or, equivalently, 
eq. (22) supplemented with ∂v/∂ lnμ = 2v.

6.5. Asymptotic solution in the primordial flat frame

We could have started our discussion of inflation with the quantum effective action (153),

� =
∫
x

√
g

{
−1

2
χ2R + λ̄χ4 ln

(
m̄

χ

)
+
[

ln−1
(

m̄

χ

)
− 3

]
∂μχ∂μχ

}
, (183)

where we take σ = 2 for simplicity, λ̄ = μ2/m̂2, and we omit the tilde on the fields. In the 
absence of radiation and matter the field equations (C.5), (C.6) read⎛

⎝ 2

ln
(

m̄
χ

) − 6

⎞
⎠( χ̈

χ
+ 3H

χ̇

χ

)
+ ln−2

(
m̄

χ

)(
χ̇

χ

)2

+ λ̄χ2
(

4 ln

(
m̄

χ

)
− 1

)
= 12H 2 + 6Ḣ , (184)

and (
H + χ̇

χ

)2

= 1

3 ln
(

m̄
χ

) ( χ̇

χ

)2

+ λ̄

3
χ2 ln

(
m̄

χ

)
. (185)

In leading order the solution for χ → 0, t → −∞ corresponds to flat space with slowly increas-
ing χ according to
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H = 0 , χ̇ =
√

λ̄

3
χ2 ln

1
2

(
m̄

χ

)
, (186)

such that the sum of scalar potential and (negative) kinetic term vanishes. The approximate time 
evolution of χ is given implicitly by

χ ln
1
2

(
m̄

χ

)
=
√

3

λ̄
(tc − t)−1, (187)

with χ → 0 for t → −∞.
In the next to leading order the solution becomes

H = cH χ̇

ln
(

m̄
χ

)
χ

, δχ = cχχ

ln
(

m̄
χ

) , (188)

with χ = χ0 + δχ and χ0 the leading order solution according to eq. (186). The field equations 
(184), (185) are both obeyed for

cH − cχ = 1

6
, (189)

such that we are left at this stage with two free integration constants tc and cH . For cH �= 0 the 
qualitative evolution of the Hubble parameter reads

H ≈ cH

(tc − t) ln
[
m̃(tc − t)

] , (190)

with m̃ varying only slowly with time. Geometry approaches flat space in the infinite past
(t → −∞), with a slowly vanishing or diverging Robertson–Walker scale factor depending on 
the sign of cH ,

a = ca ln−cH

(
m̄

χ

)
. (191)

For the particular solution cH = 0, cχ = −1/6 one has the leading behavior

H = c̃H χ̇

ln2
(

m̄
χ

)
χ

. (192)

In this case geometry approaches in the infinite past Minkowski space, with a constant scale 
factor a∞ according to

a = a∞ exp

⎧⎨
⎩− c̃H

ln
(

m̄
χ

)
⎫⎬
⎭ . (193)

6.6. Eternal universe

The geometry given by the solution (190) or (192), with χ according to eq. (186), is free of 
any singularity as long as χ remains finite. (The formal singularity of eq. (187) for t → tc is an 
artefact of the approximation, which is no longer valid for t near tc.) Space–time is geodesically 
complete. In this frame it is straightforward to see that a universe given by our solution is eternal. 
It has existed since the infinite past. As discussed in detail in Ref. [68], physical time can be 
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measured by the number of oscillations of wave functions. Physical time indeed goes to minus 
infinity in the limit t → −∞. Discrete oscillation numbers are the same in all frames, such that 
physical time is frame-independent. The eternity of the universe is therefore independent of the 
chosen frame.

Unphysical singularities in the Einstein frame arise from a singularity of the field transforma-
tion. (See Ref. [68] for a more detailed discussion.) Indeed, a Weyl scaling g′

μν = (χ2/M2)gμν

brings the effective action (183) to the form

� =
∫
x

√
g′
{

− M2

2
R′ + λ̄M4 ln

(
m̄

χ

)
+ M2

χ2 ln
(

m̄
χ

)∂μχ∂μχ
}
. (194)

This field transformation becomes singular for χ → 0, which corresponds to the infinite past in 
physical time or to the big bang singularity in the Einstein frame. With the identification

λ̄ ln

(
m̄

χ

)
= exp

(
−αϕ

M

)
(195)

we recover the form of eq. (34), with kinetial

k2 = 2α2

λ̄
exp
(
−αϕ

M

)
. (196)

For σ = 2 and λ̄ = 8μ2/m2 this agrees with eq. (37), providing for a direct link to the discussion 
of inflation in Section 3.

6.7. Free scalar field coupled to gravity

Another interesting frame change transforms the effective action (2) to a scalar field theory 
without self interactions,

� =
∫
x

√
g̃

{
−1

2
f (χ̃)χ̃2R̃ + μ2χ̃2 + K̃

2
∂μχ̃∂μχ̃

}
, (197)

with χ̃ -independent K̃ . This is achieved by transformations that leave 
√

gχ2 invariant,

gμν = 1

f
g̃μν , χ = f χ̃. (198)

The transformed kinetic coefficient becomes

K̃ = f

{
B − 6 + (2B − 6)

∂ lnf

∂ ln χ̃
+
(

B − 3

2

)(
∂ lnf

∂ ln χ̃

)2
}

. (199)

For example, one may obtain K̃ = 0 by solving for a given B(f χ̃) the differential equation for f

B(1 + y)2 = 6
(

1 + y

2

)2
, y = ∂ lnf

∂ ln χ̃
. (200)

In this frame the scalar field has only gravitational interactions. The cosmological field equation 
expresses χ̃ as a function of R̃ by the implicit equation

f + 1 ∂f = 2μ2

. (201)

2 ∂ ln χ̃ R̃
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The transformation (198) can be used in both ways. An effective action with constant K̃ and 
non-trivial f (χ̃) can be mapped to the form (2), with

B =
(

1 + ∂ lnf

∂ ln χ̃

)−2
[

K̃

f
+ 6

(
1 + 1

2

∂ lnf

∂ ln χ̃

)2
]

. (202)

In particular, for f = (χ̃/m̃)σ̃ one finds

B = (1 + σ̃ )−2

[
K̃

(
m̃

χ̃

)σ̃

+ 6

(
1 + σ̃

2

)2
]

=
(

m

χ

)σ

+ 3

2
(σ − 2)2, (203)

with

σ = σ̃

1 + σ̃
, m = [(σ − 1)2K̃

] 1
σ m̃. (204)

For σ > 1 the asymptotic behavior B = (m/χ)σ is therefore equivalent to a positive constant 
K̃ > 0 and f diverging ∼ χσ̃ , σ̃ = −σ/(σ − 1). The limiting case of a constant coefficient of 
the curvature scalar, σ̃ = −2, corresponds to σ = 2.

On the other hand, the behavior (88) near the future fixed point for χ → ∞ can be cast into 
the form (197) for

K̃ = −6 , f = 1 + 1

6κ ln χ̃
m

. (205)

The fixed point corresponds to f = 1, with flow equation

∂t (f − 1) = 6κ(f − 1)2. (206)

There are two lessons to be learned from the discussion of this section. The first concerns the 
generality of our description of the crossover by a varying kinetic term. The second concerns the 
form of the μ-flow equation underlying our approach. It depends on the choice of fields that are 
kept fixed as μ is varied, compare eq. (182) with eq. (22) supplemented with μ∂μ lnv = 2. The 
form of the flow equation depends o the frame. It transforms according to a variable change in a 
differential equation.

7. Conclusions

We have investigated the cosmological consequences of a particle physics scenario for quan-
tum gravity with an ultraviolet (UV) and infrared (IR) fixed point. The existence of an UV-fixed 
point renders quantum gravity non-perturbatively renormalizable (asymptotic safety). At this 
fixed point the exact scale symmetry is not spontaneously broken, such that all particles are mass-
less. It seems possible that appropriate renormalized couplings obey asymptotic freedom. Their 
running is governed, however, by large (non-perturbative) anomalous dimensions. These large 
anomalous dimensions provide for a simple inflationary scenario. In the particle physics sector 
they could lead to a possible explanation of the gauge hierarchy for the electroweak symmetry 
breaking.

For the IR-fixed point the exact scale symmetry is spontaneously broken, resulting in mas-
sive particles and a massless dilaton. The ratio between the effective scalar potential and the 
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fourth power of the variable Planck mass vanishes at this fixed point. As the fixed point is 
approached this ratio decreases to tiny values. In the Einstein frame this leads to an asymp-
totically vanishing effective cosmological constant. Close to the fixed point the dilaton appears 
as a pseudo-Goldstone boson withe a very small mass – the cosmon. The potential energy of the 
cosmon field is responsible for dynamical energy.

Dimensionless couplings can depend only on dimensionless ratios of quantities with dimen-
sion mass. In our case this is χ/μ, where χ is the value of a scalar singlet field (cosmon) and μ
the intrinsic mass scale appearing in the flow equations for the running couplings. The UV-fixed 
point is reached for μ → ∞ or χ → 0, while the IR fixed point corresponds to μ → 0, χ → ∞. 
Cosmology describes a crossover from the UV-fixed point in the infinite past to the IR-fixed 
point in the infinite future. This is realized by a cosmological solution with χ(t → −∞) → 0, 
χ(t → ∞) → ∞.

The crossover between the two asymptotic fixed points is responsible for the different epochs 
in cosmology. We pursue models for which the crossover occurs in two distant steps, separated by 
a range of scales for which the flow of couplings is very slow. This range can be associated to the 
flow in the vicinity of an (approximate) “standard model fixed point” (SM), see Fig. 1. The range 
of χ and associated range in cosmological time where the SM-fixed point dominates describes 
the radiation and matter dominated epochs in cosmology. The UV-fixed point is responsible for 
the inflationary epoch, which ends at the first step of the crossover (UV→SM). The IR-fixed 
point will correspond to an (unknown) future scaling solution. The second step of the crossover 
(SM→IR) entails a transition period for the present cosmology for which dynamical dark energy 
(quintessence) dominates.

The cosmology of our model involves four dimensionless parameters besides the masses and 
couplings of particles of the standard model and some dark matter candidate:

σ : anomalous dimension of the scalar at (or close to) the UV fixed point. It determines the 
spectral index n and tensor ratio r of the primordial fluctuations, cf. eq. (84).

m
μ

: scale of the first step of the crossover. It fixes the amplitude A of the primordial fluctuations, 
see eq. (56).

κ : coefficient of the approach to the IR-fixed point. It determines the fraction �ls
h of early dark 

energy at last scattering, eq. (124).
γ̃ : present growth rate of the ratio neutrino mass/electron mass. In the Einstein frame it leads to 

a sizeable neutrino-cosmon coupling β = −γ̃
√

4κ ln(M/m). The combination γ̃mν0 deter-
mines the present fraction of dark energy �h (often called ��), eq. (99).

In addition, the present average neutrino mass mν0 is not yet experimentally determined – only 
lower and upper bounds are established. We thus end with five unknown quantities that can be 
measured by cosmological tests. At present the model seems comparable with observations, with 
parameters σ ≈ 2.5, ln(m/μ) ≈ 12, κ ≈ 0.5, γ̃ mν0 ≈ 0.7.

Our model has the same number of free parameters as the �CDM model (e.g. n, r, A,

�h, mν0). A quantum gravity computation could aim for a determination of σ and κ which may 
not depend strongly on the particle physics content of the model.

The overall description of cosmology by our model is simple. It describes all cosmological 
epochs by the dynamics of a single scalar field, the cosmon. In the near future our model is subject 
to interesting tests: the details of inflation (relation between n and r), early dark energy and 
possible consequences of large non-linear neutrino lumps. It is fascinating that a basic hypothesis 
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about quantum gravity and the origin of mass, namely the existence of two fixed points and the 
necessary crossover between them, becomes testable by cosmology.

Appendix A. Flow equations for effective action

A central ingredient for this paper are the dimensionless functions B(χ/μ), C(χ/μ),

D(χ/μ), E(χ/μ) and similar functions in the matter sector of the effective action. We will 
present here no computation of these quantities. The main line of this paper makes an ansatz 
and explores its cosmological consequences. Nevertheless, in view of a future quantum gravity 
computation of functions as B(χ/μ), a few words are in order how their dependence on the ratio 
χ/μ arises. This is the purpose of this appendix.

The status of B(χ/μ) is a renormalized function that appears in the quantum effective action 
for which all quantum fluctuations have been included. It contains the information on one-particle 
irreducible vertices that obtain by functional derivatives of the corresponding scalar kinetic term 
in the effective action (2). These vertices are typically evaluated for external momenta given by 
the intrinsic mass scale μ. (Sometimes momenta may be much smaller than μ and can effectively 
be set to zero.) One could also view B as a μ-dependent dimensionless coupling. However, the 
fact that B can only depend on χ/μ implies that any μ-dependence translates to a field-dependent 
function B(χ/μ).

A.1. Relative mass scales

The key feature is the presence of two sets of scales in the quantum effective action, and 
therefore in the renormalized vertices. While μ denotes the set of all intrinsic mass scales, the 
field χ accounts for the mass scales associated to the spontaneous breaking of scale symmetry. 
In a certain sense B(χ/μ) is an analogue to the universal Widom scaling function of magnetic 
systems, with μ standing for the explicit scale symmetry breaking away from the critical temper-
ature related to T − Tc, while χ is the magnetization whose value can be dialed by a magnetic 
field. Another analogue are renormalized dimensionless couplings in the standard model of par-
ticle physics. They depend on external momenta ∼ μ and particle masses which are proportional 
to the value of the Higgs field h̃ ∼ χ . (In our setting we may use h̃ = √

εhχ , with εh a constant 
for μ2 
 χ2, cf. Section 5.) The flow equation for B(χ/μ) results from the relative shift of the 
system of intrinsic mass scales ∼ μ as compared to the system of “spontaneous” mass scales 
∼ χ . For any practical computation one has to specify these two systems.

In our setting of variable gravity the spontaneous scale χ denotes the variable Planck mass. 
It acts as an effective cutoff for the contribution of graviton fluctuations to vertices with external 
momenta Q2 
 χ2. While gravitons remain massless for arbitrary χ , the contributions of gravi-
ton loops involve inverse powers of χ since they are proportional to the gravitational coupling 
∼ χ−2 (varying Newton’s “constant”). This leads to effective decoupling, with contributions to 
the flow suppressed by powers of Q2/χ2. In a somewhat different context this has been found 
by the explicit computation in Ref. [14]. An important exception for the effective decoupling 
of graviton fluctuations for Q2 
 χ2 concerns situations where relevant graviton propagators in 
loops are close to poles.

For loop momenta q2 	 χ2 the higher order curvature terms ∼ C, D dominate the inverse 
propagators in the gravity sector, whose general form reads symbolically (omitting constants 
etc.) Cq4 +χ2q2. Variation of χ can be seen as the variation of the transition scale from effective 
fourth-derivative gravity to effective second-derivative gravity. Furthermore, particle masses are 
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proportional to χ . For example, the electron mass is given by me = heh̃ = he
√

εhχ = feχ , with 
he the Yukawa coupling of the electron to the Higgs doublet. Variation of the spontaneous scale 
χ therefore corresponds to a simultaneous change of the Planck mass and the particle masses.

In the freeze frame the intrinsic scale μ enters directly the mass term for the cosmon. It induces 
an effective infrared cutoff for the cosmon fluctuations, as given by the squared renormalized 
mass μ2

R ∼ μ2/B . (The cosmon mass is not proportional to χ , in contrast to the other particle 
masses.) Furthermore, we evaluate all couplings at external momenta Q2 ∼ μ2. This choice is 
motivated by our finding that the cosmological solutions of the field equations derived from the 
effective action (2), (3) are characterized by a Hubble parameter H which is proportional to μ. 
Fluctuations with wavelength larger than H−1 ∼ μ−1 do not contribute to the effective action for 
the cosmologically relevant values and time derivatives of metric and scalar fields. This absence 
of long-wavelength fluctuations is mimicked by external momenta Q2 ∼ H 2 ∼ μ2. A variation of 
the intrinsic scale μ therefore reflects a variation of external momenta combined with a variation 
of the scalar mass term. We should mention at this point that “naive” quantization depends on 
the frame. In a different frame the role of external momenta can look rather different, as we will 
discuss below.

Having determined the two sets of intrinsic and spontaneous scales we can now establish the 
origin of the flow equations for functions as B(χ/μ). We may either keep the particle masses 
and the Planck mass fixed (constant χ ) and vary external momenta and scalar mass term simul-
taneously (varying μ). Equivalently, we may keep external momenta and scalar mass term fixed 
(constant μ), and vary simultaneously the effective cutoff for particle and graviton fluctuations 
(varying χ ).

In our approach we keep only two sets of scales, with all parameters of dimension mass either 
proportional to μ or proportional to χ . This implies the simple relation between the μ-flow at 
fixed χ and the χ -flow at fixed μ,

μ
∂B

∂μ |χ
+ χ

∂B

∂χ |μ
= 0. (A.1)

One could consider more generalized settings involving more than two sets of mass scales. For 
example, one could investigate models with an explicit ultraviolet cutoff �, such that B depends 
on μ/� besides χ/μ. In our setting for renormalized B the cutoff � is considered as an intrin-
sic scale, with μ/� fixed. In the presence of an ultraviolet fixed point one can take the limit
μ/� → 0. Furthermore, we have taken all relevant external momenta to be ∼ μ. Certain quanti-
ties may involve vastly different external momentum scales.

A.2. Functional flow equation for effective average action

The functional flow equation for the effective average action [16] of dilaton quantum gravity 
[14] also involves two sets of mass scales: the infrared cutoff scale k and the scale χ set by the 
value of the scalar field. Coupling functions as B depend now also on the ratio χ/k. Qualitatively 
we may associate k with μ, since both scales act effectively as an infrared cutoff – one explicitly 
and the other indirectly by virtue of non-zero external momenta.

More precisely, the effective average action for our setting will involve the three sets of scales 

χ, μ and k. Often only the highest effective infrared cutoff matters. Thus the flow of B
(

χ
μ
,

χ
k

)
is roughly independent of μ for k 	 μ, and independent of k for k 
 μ. The quantum effective 
action corresponds to k → 0. On the other hand, the presence of an UV-fixed point implies 
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the existence of a scaling solution for �k . The scaling form of the effective average action is 
independent of any intrinsic scale μ. Setting μ = 0 the scaling function B∗(χ/k) only depends 
on the ratio χ/k. By virtue of the above decoupling properties we may roughly identify

B

(
χ

μ
; k = 0

)
≈ B∗

(χ

k
, k = μ

)
. (A.2)

This connects the coupling function B(χ/μ) in the full quantum effective action (k → 0) to the 
scaling function of the effective average action B∗(χ/k).

The identification (A.2) is only approximate for several reasons. First, there are proportional-
ity constants of order one, replacing k = μ by k = ciμ on the r.h.s. of eq. (A.2), with coefficients 
ci depending on particular loop contributions. They reflect the particular choice of cutoff as 
well as the “final running” in the region k � μ before the flow stops. Second, the μ-flow equa-
tion needs to incorporate properly the simultaneous change of the scalar mass parameter which 
accompanies the change of scale of external momenta. Third, the form of the effective action 
(2) assumes a particular “canonical” choice of fields. The flow of the effective average ac-
tion will typically not remain of the canonical freeze form (2). One therefore needs to perform 
k-dependent field redefinitions [85,86] in order to bring the effective average action to the canon-
ical freeze form at every scale k.

Despite these shortcomings several important general features can be inferred from the asso-
ciation between dimensionless functions in the quantum effective action and scaling functions in 
the effective average action. An ultraviolet fixed point in the functional renormalization flow of 
the effective average action corresponds to k-independent renormalized dimensionless couplings 
in the limit k → ∞. Such an UV-fixed point in the k-flow is typically reflected in an UV-fixed 
point for the μ-flow for the quantum effective action. In the presence of an UV-fixed point 
the scaling function B∗(χ/k) is universal up to the dependence on “renormalizable” couplings. 
These free renormalizable couplings correspond to the relevant parameters for small deviations 
from the UV-fixed point. On the level of the μ-flow equations for the quantum effective action 
these free parameters appear as integration constants for the solution of the flow equation.

A.3. Scaling solutions and relevant parameters

A simple example for the connection between relevant parameters and free integration con-
stants in the scaling solution is the running of a non-abelian gauge coupling g in the presence of 
spontaneous symmetry breaking which gives the gauge bosons a mass χ . The qualitative form 
of the flow equation (c > 0),

k∂kg
2|χ = −cg4θ

(
1 − χ2

k2

)
, (A.3)

accounts for asymptotic freedom (UV-fixed point at g = 0) and the stop of the flow once k be-
comes smaller than the gauge boson masses. Here θ(x) is the heavy side function – smooth 
“threshold functions” approaching one for χ2 
 k2 and zero for χ2 	 k2 would lead to qualita-
tively similar results. The scaling solution of eq. (A.3),

g−2 = g−2∗ (y) = g−2
0 − c

2
lny θ(1 − y) , y = χ2

k2
, (A.4)

contains the free integration constant g0. This corresponds to the value of the gauge coupling for 
k ≤ χ . One easily checks that the scaling function g∗(y) is a fixed point of the flow equation for 
a fixed dimensionless ratio y
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k∂kg
2|y = k∂kg

2|χ + 2y∂yg
2 = 0. (A.5)

According to eq. (A.2) the scaling solution g∗(y) can be taken over to the quantum effective 
action by the identification y = χ2/μ2.

The IR-fixed point for the scaling solution (A.4) is rather trivial. For any finite positive g2
0

the running of the coupling simply stops due to decoupling for k2 < χ2. The realization of an 
IR-fixed point by an effective stop of the flow due to excitations becoming heavy or interactions 
going to zero is a rather generic phenomenon. It is, however, not the only way how an IR-fixed 
point can be realized.

The scaling solution (A.4) is not the most general solution of the flow equation (A.3). For the 
general solution we can replace the constant g2

0 by an arbitrary function of χ ,

g2
0(χ2) = g2

0(yk2). (A.6)

This is no longer a scaling solution due to the explicit dependence on k for fixed y. This depen-
dence implies the presence of a further scale as the ultraviolet cutoff �, such that g2

0 depends on 
the dimensionless ratios y and k/�. In the limit k → 0 at fixed y the general solution approaches 
a scaling solution, with constant g2

0 = g2
0(0). This holds provided that the limit g2

0(χ
2/�2 → 0)

is finite.
We emphasize that a scaling solution is approached universally in the infrared limit

k → 0 despite the presence of a relevant parameter at the UV-fixed point. (We do not distin-
guish between marginal and relevant couplings here.) The relevant parameter rather manifests 
itself by the presence of a free parameter in the scaling solution. This feature can be understood 
by the observation that the limit k → 0 at fixed y and � corresponds to the limit � → ∞ at fixed 
y and k. In the presence on an ultraviolet fixed point the limit � → ∞ can be taken, removing 
any explicit dependence on � for renormalized dimensionless quantities. As a consequence g
can only depend on y in this limit and the scaling function has to be approached. There remains, 
however, some memory of the behavior close to the UV-fixed point. This corresponds to the 
relevant parameters or renormalizable couplings. The corresponding information has to appear 
in the form of free parameters for the scaling solution.

The characteristic features discussed here are not special for the case of asymptotic freedom. 
As an example of a dimensionless coupling λ with UV- and IR-fixed point we consider the flow 
equation

k∂kλ|χ = c(λ − λIR)(λ − λUV)θ

(
1 − χ2

k2

)
, λIR > λUV , c > 0. (A.7)

The scaling solution reads for y ≤ 1

λ∗(y) = λUVλIR(1 − z) + λ0(λIRz − λUV)

λIR − λUVz − λ0(1 − z)
,

z = y
c
2 (λIR−λUV ) , λUV ≤ λ0 ≤ λIR, (A.8)

and λ = λ0 for y ≥ 1. In the UV-limit y → 0 the scaling function λ∗(y) approaches λUV , while 
the IR-limit is given by λ∗(y → ∞) = λ0. The free integration constant λ0 denotes the value of 
the coupling when the crossover between λUV and λIR is stopped by the decoupling for k2 < χ2. 
For λ0 very close to λIR the value of λ∗(y) remains close to this value for a large range of y. 
The discussion of the general solution is similar to our first example, with λ0 depending on the 
combination yk2/�2 = χ2/�2.
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A.4. Stages of the flow in the freeze frame

The analogy between the μ-flow of the quantum effective action and the scaling solution of 
the effective average action helps to visualize which type of fluctuations contribute to quantities 
as B(y) = B(χ2/μ2) for different ranges of y. For y � 1 the graviton fluctuations are effective. 
They are described by fourth order gravity for y → 0. (The symbols �, � denote here order of 
magnitude estimates.) For y � 1 gravity decouples unless the graviton fluctuations are dominated 
by a pole in the propagator. The flow will be dominated by particles with mass smaller than χ . 
Those include the cosmon. More precisely, the propagators for the scalar field χ and the scalar 
degrees of freedom in the metric mix and the cosmon is associated with a suitable eigenstate.

Beyond the cosmon many particles of the standard model have masses much smaller than χ . In 
a grand unified theory there would be particles with mass around (10−3 − 10−2)χ that decouple 
once μ gets smaller than this value. The particles of the standard model have masses substantially 
smaller than χ due to the electroweak gauge hierarchy and the small ratio between the QCD-scale 
and the Planck scale. They affect the running of the standard model couplings according to the 
well known perturbative β-functions. (The influence on the flow of B is not known so far.) 
This standard model flow stops effectively once μ drops below the χ -dependent electron mass 
me(χ) ≈ 2 · 10−22χ . Thus for 1 
 y � 2 · 1043 one expects a range of “standard model flow”. In 
addition to the particles of the standard model also the cosmon and possibly the graviton and the 
scalar gravitational degree of freedom contribute to the flow. These contributions could actually 
dominate the flow of B .

The standard model flow ends at a value of y that corresponds to a cosmological epoch before 
the electroweak phase transition. (Recall that the value of y relevant for present cosmology is 
around 10120.) In the Einstein frame the end of the standard model flow corresponds to a Hubble 
parameter of the order of the electron mass, cosmic time of the order m−1

e , or temperature in the 
range 107 GeV. For y � 1044 the running of the standard model couplings stops effectively and 
the flow is characterized by the standard model fixed point.

In the vicinity of the standard model fixed point only neutrinos, photons, cosmon and possibly 
gravitational degrees of freedom as well as other light particles beyond the standard model (e.g. 
very light scalar fields for dark matter [87,88]) contribute to the flow. Neutrinos will decouple 
once μ drops below the neutrino mass. According to our assumption the flow in this range is 
unstable in the “beyond standard model (BSM)-sector”, exhibiting a remaining (marginally) rel-
evant coupling. The second step of the crossover occurs once this relevant deviation from the 
standard model fixed point becomes large. Neutrino masses are directly sensitive to the BSM-
sector, such that the second stage of the crossover becomes first “visible” in these quantities.

We end this short qualitative “history” of the flow with the remark that the effect on the 
kinetial B may be indirect. For example, a contribution to the flow of the potential (e.g. a running 
χ -independent term) translates to a flow of B by field transformations, as discussed in Section 6
and Appendix E.

A.5. Flow equations in different frames

Let us assume for this paragraph that the leading term in the potential for large χ is not a term 
quadratic in χ as in eq. (2), but rather a constant V = μ̃4. A cosmological model of this type 
has been discussed in Ref. [4], model (B). Realistic cosmology requires μ̃ ≈ 2 · 10−3 eV. The 
characteristic size of the Hubble parameter is H ≈ μ̃2/χ̃ , with χ̃ the scalar field in this frame. 
We can take over the preceding discussion with the association μ = μ̃2/χ̃ or ỹ = χ̃2/μ̃2 = √

y.
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Once the kinetial B̃(ỹ) is found in this setting, it can be transformed to the one in the freeze 
frame, B(y), by the variable transformation discussed in Section 6, e.g. eq. (159). This demon-
strates a general feature. Typically, a quantum computation of the flow equation will be done in 
a particular frame, e.g. assuming implicitly a simple functional measure. The translation to the 
freeze frame can then be done on the level of the quantum effective action.

Appendix B. Fixed points and crossover for dimensionless couplings

In this appendix we discuss the general structure of the crossover between two fixed points 
for a dimensionless coupling. For this purpose we use a simple example for the flow equations. 
We apply these findings to a discussion of the behavior of neutrino masses during the second 
stage of the crossover. For a dimensionless coupling h depending on χ/μ we formulate the flow 
equation directly in terms of the χ -dependence for fixed μ.

Consider a dimensionless coupling h whose dependence on χ obeys the flow equation

∂h2

∂ lnχ
= c(h2 − f1)(h

2 − f2), (B.1)

with f1 and f2 the values of two fixed points for h2, with 0 < f1 < f2. We take c > 0 such that 
f2 is approached for χ → 0 and f1 for χ → ∞. The solution of eq. (B.1) is given implicitly by

h2 − f1

f2 − h2
=
(

χ

χ0

)−c(f2−f1)

. (B.2)

As χ increases from zero to infinity this describes for h2 a crossover from the fixed point at f2 to 
the one at f1. The free integration constant χ0 is proportional to μ. It determines at which value 
of χ/μ the crossover occurs. This depends how “close” a given trajectory is to the UV-fixed 
point. The ratio χ0/μ can therefore be exponentially large or small.

For sufficiently large χ one has approximately

h2 = f1 + (f2 − f1)

(
χ

χ0

)−c(f2−f1)

. (B.3)

Then the relative change of h2,

1

h2

∂h2

∂ lnχ
= −c(f2 − f1)

2

f1

(
χ

χ0

)−c(f2−f1)

, (B.4)

becomes tiny for

ln(χ/χ0) 	 [
c(f2 − f1)

]−1
. (B.5)

Particle masses can be written as mA = hA(χ)χ , with an appropriate dimensionless coupling 
function hA(χ). If hA obeys eqs. (B.1), (B.5) the particle mass mA scales (almost) proportional 
to χ . This is what we will assume for all particles of the standard model except for neutrinos. 
The scaling mA ∼ χ indicates dilatation or scale symmetry, as appropriate for a fixed point.

For these particles we associate χ0 with m. For nucleosynthesis and the subsequent epochs 
of cosmology the ratio χ/m is already huge. For sufficiently large c(f2 − f1) the χ -dependence 
of couplings and mass ratios for standard model particles will be too small to be observable. 
For smaller c(f2 − f1), however, a tiny residual χ -dependence of couplings could result in an 
observable time variation. The couplings during nucleosynthesis may then be slightly different 
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from the present ones. Eq. (B.4) relates the time variation during nucleosynthesis with the one in 
the present cosmological epoch.

Let us next discuss the crossover from f2 to f1, specializing to f1 
 f2. We may consider the 
crossover region f1 
 h2 
 f2 where we approximate

h2 = f2

(
χ

χ0

)−cf2

. (B.6)

For the particular flow equation (B.1) this region is characterized by a constant anomalous di-
mension

∂ lnh2

∂ lnχ
= −cf2. (B.7)

We will assume that neutrino masses show this type of crossover behavior.
Neutrino masses are characterized by the seesaw formula,

mν = h2
νϕ

2
H

MB−L

, (B.8)

with ϕH the Fermi scale (expectation value of the Higgs doublet) and MB–L a characteristic high 
mass scale where B–L symmetry is violated. Severe bounds on the time variation of electron 
over proton mass indicate that ϕH/χ must be close to a fixed point already for values of χ
characteristic for nucleosynthesis. A first scenario may assume h2 = MB–L/χ , with h2 obeying 
the flow eq. (B.1). With ϕH ∼ χ eqs. (B.7), (B.8) yield

γ̃ = 1

2

∂ ln(mν/χ)

∂ lnχ
= cf2

2
. (B.9)

A non-trivial scaling mν ∼ χ1+2γ̃ may correspond to such a crossover situation.
Other forms of a crossover, with γ̃ depending on χ , are conceivable as well. With m̃ = mν/χ , 

any positive continuous function γ̃ (m̃) with two different zeros at m̃1 and m̃2 describes a 
crossover between m̃ = m̃1 for χ → 0 and m̃ = m̃2 for χ → ∞.

For our second scenario we take

γ̃ = m̃ − m̃1

m̃1

m̃2 − m̃

m̃2
, (B.10)

with constant fixed point values m̃1 and m̃2, m̃1 
 m̃2. Again, a non-zero value of γ̃ reflects the 
χ -dependence of MB−L/χ . For the crossover region m̃1 
 m̃ 
 m̃2 we can approximate

γ̃ = m̃

m̃1
. (B.11)

The corresponding solution of eq. (B.9), γ̃ = ∂ ln m̃/(2∂ lnχ), namely

m̃ = mν

χ
= m̃1

ln
(

χ̄2
ν

χ2

) , (B.12)

diverges for χ approaching the constant χ̄ν . This is, however, outside the validity of the approx-
imation. For m̃ approaching m̃2 eq. (B.10) implies that the increase with χ is stopped. In the 
crossover region, however, the fixed point at m̃2 is not yet visible. We could also multiply the 
r.h.s. of eq. (B.10) with a constant. Within the crossover region this constant can be absorbed into 
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a redefinition of m̃1. At this point the χ -dependence of the average neutrino mass involves two 
parameters, m̃1 and χ̄ν . We will see that it corresponds to the setting of Ref. [7].

The parameter m̃1 is given by the ratio between the average neutrino mass and the Planck 
mass in earlier epochs of cosmology, before the crossover in the neutrino sector sets in. Taking in 
eq. (B.8) an “early value” MB–L/χ ≈ 10−3, as appropriate for B–L violation at some scale char-
acteristic for grand unification, and ϕH/χ ≈ 10−16, as given by the electroweak gauge hierarchy, 
we estimate

m̃1 = 10−29h2
ν, (B.13)

with h2
ν typically smaller than one. (For these estimates we employ the present value of χ , namely 

M = 2.44 · 1027 eV.) For the present value of m̃ one has

m̃(t0) =
(

mν(t0)

0.25 eV

)
· 10−28. (B.14)

This is well compatible with our assumption that for the present cosmological epoch the 
neutrino masses are in the crossover region,

γ̃ (t0) = m̃(t0)

m̃1
− 1 = 1

ln
(

χ̄2
ν

M2

)
= 10

h2
ν

(
mν(t0)

0.25 eV

)
− 1 	 1. (B.15)

For γ̃ (t0) = 9 the ratio MB–L/χ has decreased at present by a factor of ten as compared to its 
early value.

Appendix C. Field equations for variable gravity and asymptotic solutions

In this appendix we discuss field equations and solutions of variable gravity. For the solutions 
we do not attempt to give a complete overview but rather concentrate on a few characteristic 
ones.

C.1. Field equations

In this appendix we investigate the field equations derived from the effective action

� =
∫
x

√
g

{
−1

2
χ2R − C

2
R2 + B(χ) − 6

2
∂μχ∂μχ + V (χ)

}
, (C.1)

with constant C. We have omitted the term ∼ D in eq. (3) since it does not contribute to the field 
equations for a spatially flat Robertson–Walker metric if D is constant. The gravitational field 
equation is obtained by variation of the effective action (C.1) with respect to the metric,

χ2(Rμν − 1

2
Rgμν) + D2χ2gμν − DμDνχ

2

+ (B − 6)

(
1

2
∂ρχ∂ρχgμν − ∂μχ∂νχ

)
+ Vgμν

+ C(2RRμν − 1
R2gμν + 2D2Rgμν − 2DμDνR) = Tμν. (C.2)
2
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Here Dμ denotes the covariant derivative, D2 = DμDμ, and Tμν is the energy–momentum ten-
sor. The cosmon field equation is given by

(B − 6)D2χ + 1

2

∂B

∂χ
∂μχ∂μχ = ∂V

∂χ
− χR − qχ , (C.3)

with qχ the contribution from particles with χ -dependent mass. Contracting eq. (C.2) yields a 
differential equation for the curvature scalar if C �= 0,

6CD2R − χ2R + 6χD2χ + B∂μχ∂μχ + 4V = T μ
μ . (C.4)

For a Robertson–Walker metric with vanishing spatial curvature a time dependent homoge-
neous scalar field obeys

(B − 6)(χ̈ + 3Hχ̇) + 1

2

∂B

∂χ
χ̇2 + ∂V

∂χ
− χ(12H 2 + 6Ḣ ) = qχ , (C.5)

while the (0, 0)-component of eq. (C.2) yields (T00 = ρ)

3(χH + χ̇ )2 = B

2
χ̇2 + V + 18C(Ḣ 2 − 2HḦ − 6H 2Ḣ ) + ρ. (C.6)

Taking a time-derivative of eq. (C.6), adding eq. (C.5) multiplied by χ̇ and using eq. (C.4) yields 
the generalized conservation equation (T μ

μ = −ρ + 3p)

ρ̇ + 3H(ρ + p) + qχ χ̇ = 0. (C.7)

We will use eqs. (C.5), (C.6) and (C.7) as the three independent equations which determine the 
time evolution. We observe that the contribution from the term ∼ CR2 vanishes for constant H .

C.2. Asymptotic solutions

For primordial cosmology we neglect Tμν and qχ . In the absence of matter and radiation 
eqs. (C.5) and (C.6) constitute two non-linear second order differential equations for χ and H . 
For V = μ2χ2 and B = (m/χ)σ they admit the simple family of solutions

χ = 0 , H = H0, (C.8)

with H0 an arbitrary constant. For positive Hχ̇ these asymptotic solutions can be approached in 
the infinite past t → −∞ provided

H0 >
μ√

6
. (C.9)

Small deviations from the asymptotic solution (C.8) grow as time increases.
For the case H0 = μ/

√
3 we recover the scaling solution (29), (31), which reads for arbitrary σ

H = μ√
3

, χ = m

( √
3

2σμ(tc − t)

) 1
σ

. (C.10)

For C �= 0 and arbitrary H0 > μ/
√

6 one can find more general solutions

H = H0 + δH,

χ = m

(
3H0

2σ(6H 2 − μ2)(t − t)

) 1
σ

, (C.11)

0 c
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provided that δH vanishes for t → −∞ according to the solution of the equation

Ḣ = χ2

36C

(
μ2

3H 2
0

− 1

)
. (C.12)

Eq. (C.12) is necessary for the approximate solution of eq. (C.6). It is compatible with
|δH(t → −∞)| → 0 only for σ < 2. Then typical solutions that can be extended towards the 
infinite past switch from an asymptotic solution (C.11) for t → −∞ towards the scaling so-
lution (C.10) as time increases. We recall that such solutions with H 2

0 �= μ2/3 exist only for 
C �= 0, σ < 2.

In order to estimate the influence of the higher curvature term ∼ CR2 we evaluate its contri-
bution to equation (C.6). For t → −∞ we investigate solutions of the type

H = bμ + f (tc − t)−η , χ = χ̄ (tc − t)−ζ . (C.13)

The term ∼ C in eq. (C.6) contributes in leading order −108CH 2Ḣ = 108Cηf b2μ2(tc −
t)−(1+η), to be compared with V = μ2χ̄2(tc − t)−2ζ and (B/2)χ̇2 = (mσ /2)ζ 2χ̄2−σ (tc −
t)−2+ζ(σ−2). For 2ζ < 1 + η the potential V dominates the r.h.s of eq. (C.6) for t → −∞, 
implying b = 1/

√
3. For the vicinity of the scaling solution (C.10) this turns out to be indeed 

the leading behavior for H for t → −∞. On the other hand, for the vicinity of the asymptotic 
solutions (C.11) for H0 �= μ/

√
3 we will find 2ζ = 1 + η such that the term ∼ C is of equal 

importance as V on the r.h.s. of eq. (C.6). We will discuss the two cases separately.
For H = μ/

√
3 the cosmon field equation reads in leading order

χ̇ = 2√
3
μm−σ χ1+σ , (C.14)

such that eq. (C.13) is obeyed with

ζ = 1

σ
, χ̄ = m

( √
3

2σμ

) 1
σ

. (C.15)

This is the scaling solution (C.10). In the infinite past t → −∞ one has χ = 0 and realizes 
eq. (12).

For the next to leading contribution to H one finds

f (tc − t)−η = − 5

6σ
(tc − t)−1 − f Fc(tc − t)−1−η+ 2

σ , (C.16)

with

Fc = 6
√

3Cημ

m2

(
2σμ√

3

) 2
σ

. (C.17)

For σ < 2 the l.h.s. of eq. (C.16) can be neglected for t → −∞, such that the term ∼ C dominates 
the next to leading correction to H . A solution for t → −∞ is therefore given by eq. (C.13) with

η = 2

σ
, f = − 5

6σFc

. (C.18)

As t increases towards tc the l.h.s of eq. (C.16) increases faster than the r.h.s. if σ < 2. It 
equals the term ∼ C at a transition time ttr given by
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tc − ttr = |Fc|− σ
2−σ =

√
3

2σμ

(
24|C|μ2

m2

)− σ
2−σ

. (C.19)

After the transition, for tc − t 
 tc − ttr , the next to leading order contribution to H switches to

η = 1 , f = −5/(6σ), (C.20)

and the contribution of the higher curvature term ∼ C becomes negligible. We observe that for 
C of the order one the dimensionless ratio μ(tc − ttr) is large due to the small ratio μ2/m2. If 
we associate tc roughly with the end of inflation this implies that the higher order curvature term 
∼ C becomes negligible long before the observable fluctuations cross the horizon.

We conclude that for σ < 2 the higher curvature term ∼ CR2 does not influence the leading 
behavior of the scaling solution for H and χ . Only the next to leading terms in the solution 
for t → −∞ are influenced by C �= 0. This influence ends effectively at ttr, long before the 
observable primordial density fluctuations leave the horizon. For the observable properties of 
inflation the role of the term ∼ CR2 is negligible.

For σ > 2 the switch between the two types of solutions for δH occurs in the inverse order. 
For t → −∞ one finds the solution (C.20), while for t → tc the term involving C becomes 
dominant in eq. (C.16). For t > ttr the solution formally switches to eq. (C.18) and C seems to 
matter. For σ > 2 the formal transition time ttr is very close to the end of inflation at tc, however. 
At this time the approximation (C.13) is no longer valid. For σ > 2 the higher curvature invariant 
∼ C is negligible for all t , with

δH = − 5

6σ
(tc − t)−1. (C.21)

Finally, we may also consider the boundary case σ = 2 for which all three terms in eq. (C.16)
have the same time dependence,

η = 1 , f = − 5

12(Fc + 1)
, Fc = 24Cμ2

m2
. (C.22)

The quantitative influence of the term ∼ C is negligible for all t due to the tiny ratio μ2/m2.
We next turn to the asymptotic solutions (C.11) with H0 �= μ/

√
3 or b �= 1/

√
3. For σ < 2

they realize ζ = 1/σ, η = 2/σ − 1 according to eq. (C.12), such that the next to leading behavior 
for H reads

H = H0 + f (tc − t)−
2−σ
σ . (C.23)

The constant f is given by

f = m2(μ2 − 3H 2
0 )σ

108CH 2
0 (2 − σ)

(
3H0

2σ(6H 2
0 − μ2)

) 2
σ

. (C.24)

This type of solution is only valid for σ < 2.
The family of solutions (C.11) is not the only possible behavior in the infinite past for

t → −∞. For example, a solution with χ = 0, χ̇ = 0 can be found for

2HḦ = Ḣ 2 − 6H 2Ḣ . (C.25)

This differential equation admits solutions of the type (C.13) that approaches flat space in the 
infinite past (b = 0). With η = 1, f = − 1

2 the evolution of the scale factor describes a shrinking 
universe
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H = −1

2
(tc − t)−1 , a = a0

√
tc − t (C.26)

In this case the past infinite universe is flat with infinite scale factor, similar to the future in the ra-
diation dominated Friedman universe, a = a0

√
t − tc. (The time reflected solution a = a0

√
t − tc

also solves eq. (C.25).) This type of solution with negative H seems not to be connected with 
solutions that lead to realistic cosmologies for later times.

C.3. Renormalized scalar field

We are interested in the general behavior of solutions close to the UV-fixed point, e.g. for 
small χ . For χ close to zero it is advantageous to write the field equations in terms of the renor-
malized scalar field

χR = 2

2 − σ

√
Bχ , B =

(
m

χ

)σ

. (C.27)

With

χ̇ = B−1/2χ̇R , χ̈ = B− 1
2

(
χ̈R + σ

2 − σ

χ̇2
R

χR

)
,

Bχ̈ + 1

2

∂B

∂χ
χ̇2 = B1/2χ̈R, (C.28)

and approximating B − 6 ≈ B , the field equations (C.5), (C.6) read in the absence of matter and 
radiation

χ̈R + 3Hχ̇R = 2 − σ

2B
(12H 2 + 6Ḣ − 2μ2)χR (C.29)

and

36CHḦ = 18C(Ḣ 2 − 6H 2Ḣ ) +
(

2 − σ

2

)2

B−1(μ2 − 3H 2)χ2
R

+ 1

2
χ̇2

R − 3(2 − σ)B−1Hχ̇RχR. (C.30)

Once B−1 is expressed in terms of χR ,

B−1 =
(

(2 − σ)χR

2m

) 2σ
2−σ

, (C.31)

this form is suitable for numerical solutions. (At a point where H vanishes (or for C = 0) the 
r.h.s. of eq. (C.30) has to be equal to zero.)

We concentrate on σ < 2 where χ → 0 corresponds to χR → 0. One recovers the simple 
solution χR = 0 or χ = 0 with an arbitrary constant value of the Hubble parameter H = H0. The 
stability of this solution depends on the value of H0. For H0 < μ/

√
6 a small initial value of χR

decreases towards zero. On the other hand, for H0 > μ/
√

6 a perturbation in χ grows and the 
solution with χ = 0 is unstable. We are mainly interested in the second type of solution where χ
moves away from the UV-fixed point at χ = 0 as time increases.

It is useful to express the field equations in terms of the potential for the renormalized field,
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V = μ2m2
(

(2 − σ)χR

2m

) 4
2−σ

. (C.32)

The scalar field equation (C.29) reads

χ̈R + 3Hχ̇R = − ∂V

∂χR

(
1 − 6H 2 + 3Ḣ

μ2

)
. (C.33)

We observe that for H 2 ≈ μ2/3 the prefactor of the potential derivative has a sign opposite to 
the case of a scalar field in a flat background, such that χR increases with increasing time.

Eq. (C.30) can be written in the form

36CHḦ = 18C(Ḣ 2 − 6H 2Ḣ ) + V

(
1 − 3H 2

μ2

)

+ 1

2
χ̇2

R − 3Hχ̇R

μ2

∂V

∂χR

. (C.34)

We observe that eqs. (C.33) and (C.34) can be directly derived from the effective action (8), (9)
for the renormalized scalar field,

� =
∫
x

√
g

{
1

2
∂μχR∂μχR + V (χR) − V (χR)

2μ2
R − C

2
R2
}

. (C.35)

For a general effective action (2), (3) the relation between χR and χ can be extended to arbitrary 
B in the form

∂χR

∂χ
= √

B − 6. (C.36)

This coincides with eq. (C.27) if we replace B by B − 6.

C.4. Numerical solutions

We have investigated numerically the coupled system of differential equations (C.33), (C.34), 
(C.32) for constant σ < 2, starting at some time t0 with “initial conditions” for χR, χ̇R, H and Ḣ . 
For positive H(t0) we find that for a large range of initial values for χ̇R and Ḣ both χR and H
approach very rapidly almost constant values. After this first stage one observes a second stage 
of slow evolution according to the approximate equations

χ̇R = − 1

3H

∂V

∂χR

(
1 − 6H 2

μ2

)
,

Ḣ = V

108CH 2

(
1 − 3H 2

μ2

)
. (C.37)

Part of the memory of the initial conditions has been lost at this stage. Finally, the evolution 
speeds up if V and ∂V/∂χR become large enough, typically for χR of the order 2m/(2 − σ). 
At this point B is of the order one, roughly corresponding to the end of an inflationary epoch.

This behavior is illustrated in Figs. 4 and 5 which show the time evolution of χR and H for two 
different initial values. Parameters are σ = 1.5, m/μ = 3, C = 0.05. All quantities are expressed 
in units of appropriate powers of μ. We observe an extremely slow evolution, recalling that the 
time unit μ−1 amounts to 1010 yr. For realistic larger ratios of m/μ this would be even more 
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Fig. 4. Slow time evolution of the renormalized scalar field χR . For a large range of initial parameters the family of such 
asymptotic solutions is approached very rapidly.

Fig. 5. Slow time evolution of the Hubble parameter.

extreme. We have compared our numerical results with solutions of the approximate equations 
(C.37). The difference is not visible in these plots. The green curve corresponds to the scaling 
solution (C.10) with H0 = μ/

√
3, visible by the constant value of H . The other two solutions 

move towards this solution.
For an analytic discussion of eq. (C.37) we may introduce a new evolution variable z by

dz

dt
= V, (C.38)

such that equations (C.37) read

∂χ2
R

∂z
= − 8

3(2 − σ)

(
1

H
− 6H

μ2

)
,

∂H

∂z
= 1

108C

(
1

H 2
− 3

μ2

)
. (C.39)

The evolution of H has a fixed point at H = μ/
√

3 that is approached for increasing z. Close to 
the fixed point χR increases monotonically with z,

χR =
(

8z√
) 1

2

. (C.40)

3(2 − σ)μ
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On the other hand, for H < μ/
√

6 one observes a decrease of χR with increasing z.
In particular, for C > 0 and H 
 μ one finds approximately

H(z) =
( z

36C

) 1
3
, (C.41)

and

χ2
R = χ2

R0 − 4

2 − σ
(36C)

1
3 z

2
3 . (C.42)

Since χ2
R must be positive eq. (C.42) holds only for z < zmax,

zmax =
(

2 − σ

4

)3/2

(36C)−
1
2 χ3

R0. (C.43)

For z approaching zmax the time diverges according to

dz

dt
= V = A

(
z

2
3
max − z

2
3

) 2
2−σ

= A

(
2

3
z
− 1

3
max

) 2
2−σ

(zmax − z)
2

2−σ , (C.44)

which implies

t = t0 + Ã(zmax − z)−
σ

2−σ . (C.45)

Accordingly, the Hubble parameter reaches a maximal value

Hmax =
(zmax

36C

)1/3 =
(

2 − σ

144C

) 1
2

χR0. (C.46)

Of course, this type of solution is a reasonable approximation only for Hmax 
 μ. This type of 
solution corresponds to the case of a stable solution χ = 0, H = H0, which is approached for 
t → ∞. Alternatively, H may exceed the value Hcr = μ/

√
6 for z < zmax. From there on χR

increases and both χR and H move towards the scaling solution (C.10).
At this point we can classify the behavior of the numerical solutions of the field eqs. (C.33), 

(C.34) in terms of the asymptotic solutions (C.11), (C.23). These solutions form a family of 
attractor solutions provided H0 > μ/

√
6. For a very large class of initial conditions the general 

solution approaches very rapidly this family of attractor solutions. The attractor solutions can 
be extended to the infinite past, while this does not hold for neighboring solutions. The attractor 
solutions obey the approximate field equations (C.37). The slow evolution according to these 
equations entails an approach of all attractor solutions towards the particular scaling solution 
(C.10). This slow evolution ends once t is sufficiently close to tc such that B reaches a value 
around one for χ around m.

We show the fast approach to the family of attractor solutions in Figs. 6 and 7 which compare 
the time evolution of χR and H for initial conditions given at some arbitrary time t0 which the 
scaling solution (C.10). (Parameters are again σ = 1.5, m/μ = 3, C = 0.05.) As compared to 
the slow subsequent evolution, the approach to the family of scaling solutions is very rapid.
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Fig. 6. Fast approach of the renormalized scalar field χR to the family of asymptotic solutions. In the Einstein frame the 
big bang singularity is crossed when χR goes through zero.

Fig. 7. Fast approach of the Hubble parameter to the almost constant value of the asymptotic solution.

C.5. Crossing smoothly the big bang

For Fig. 6 we have chosen initial conditions such that χR(t) switches from negative to positive 
values. From eq. (C.27) we infer that also χ crosses zero at this moment (σ < 2). A vanishing 
value of χ corresponds to the big bang singularity in the Einstein frame. We have therefore 
established an explicit solution of field equations which cross from a pre-big-bang regime to 
an after-big-bang regime. In the freeze frame this crossing is completely regular. No singularity 
appears in the field equations for a vanishing field value of χ . The big bang singularity in the 
Einstein frame is a pure artefact of the choice of fields which becomes singular for χ = 0.

In the freeze frame it takes only a finite interval in physical time (as measured by the number 
of oscillations of wave functions) in order to cross from negative to positive values of χ . Since 
physical time does not depend on the frame, we conclude that the big bang singularity in the 
Einstein frame is reached for a finite physical time for this type of solution. This contrasts to the 
asymptotic solutions where the big bang is reached only at an infinite interval of physical time in 
the past.
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Appendix D. Two scalar field description

In this appendix we explain several features of the solutions discussed in Appendix C in terms 
if an equivalent formulation with two scalar fields. We also discuss the possibility of a periodic 
crossing of the “big bang singularity” for the initial cosmology of our model.

D.1. Formulation with two scalar fields

The higher curvature invariant ∼ C in eq. (C.1) entails an additional physical scalar degree 
of freedom if C is a positive constant. (For the model (2), (3) we specialize to constant C > 0, 
while we omit a constant D since it does not contribute to the field equations.) Some aspects of 
the behavior of primordial cosmology become more apparent if we transform the effective action 
(C.1) to an equivalent model with two scalar fields.

For this purpose we add to � a term

	� = C

2

∫
x

√
g(φ − R)2, (D.1)

such that

�′ = � + 	� =
∫
x

√
g

{
K

2
∂μχ∂μχ + μ2χ2 − 1

2
(χ2 + 2Cφ)R + C

2
φ2
}

, (D.2)

where

K = B − 6. (D.3)

Inserting the solution of the field equation for φ, namely φ = R, into �′ we recover �. The field 
equations derived from � and �′ are therefore equivalent. The term ∼ CR2 is effectively replaced 
by the interactions of the new scalar field φ. The field equations are now of second order.

Employing a transformation of the metric,

gμν = M2

χ2 + 2Cφ
g′

μν = w̄2g′
μν, (D.4)

one has

R = w̄−2
{
R′ − 6D2 ln w̄ − 6∂μ ln w̄ ∂μ ln w̄

}
, (D.5)

where R′ and the covariant derivatives on the r.h.s. are formed with the metric g′
μν . In the new 

frame the effective action reads

�′ =
∫
x

√
g′
{
−M2

2
R′ + V ′ +L′

kin

}
, (D.6)

with

V ′ = M4

(χ2 + 2Cφ)2

(
μ2χ2 + C

2
φ2
)

, (D.7)

and
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L′
kin = M2

2(χ2 + 2Cφ)2

{(
(K + 6)χ2 + 2Cφ

)
∂μχ∂μχ + 12Cχ∂μχ∂μφ + 6C2∂μφ∂μφ

}
.

(D.8)

It describes standard Einstein gravity (with M the reduced Planck mass) coupled to two scalar 
fields χ and φ.

It is instructive to study the potential V ′(χ, φ) as a function of φ for fixed χ . For φ → ∞ it 
approaches the constant

V ′∞ = lim
φ→∞V ′(χ,φ) = M4

8C
, (D.9)

while for φ → 0 one has

lim
φ→0

V ′(χ,φ) = M4μ2

χ2
. (D.10)

With

∂V ′

∂φ
= CM4χ2(φ − 4μ2)

(χ2 + 2Cφ)3
(D.11)

we observe a partial minimum for

φmin = 4μ2. (D.12)

We will see that this partial minimum corresponds to the scaling solution (C.10).
For φ = 4μ2 one has a valley in the potential V ′(χ, φ). Along this valley the potential

V ′(χ,φmin) = μ2M4

χ2 + 8Cμ2
(D.13)

vanishes for χ → ∞. As time increases φ typically settles at φmin, such that the kinetic term 
becomes

L′
kin[χ,φmin] = M2((K + 6)χ2 + 8Cμ2)

2(χ2 + 8Cμ2)2
∂μχ∂μχ. (D.14)

As a result of the decaying potential (D.13) the behavior of the cosmological solution is then 
characterized by an increase of χ to values χ2 	 μ2. Asymptotically, for t → ∞, χ increases to 
infinity and the effective cosmological constant V ′ vanishes.

For small |Cφ/χ2| 
 1, and Cμ2/χ2 
 1, we can expand

V ′ = M4μ2

χ2
+ CM4

2χ4
(φ2 − 8μ2φ), (D.15)

as well as

L′
kin = (K + 6)M2

2χ2
∂μχ∂μχ + 3C2M2

χ4
∂μφ∂μφ + 6CM2

χ3
∂μχ∂μφ. (D.16)

In the limit where derivatives of χ can be neglected φ describes a stable scalar field. Depending 
on the relative size of the kinetic term it will perform damped oscillations around its minimum 
at φ = 4μ2 and finally settle there, or it will reach this minimum in an overdamped approach. 
Realizing that φ equals the curvature scalar in the freeze frame, R ≈ 12H 2, we recover indeed the 
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leading behavior of the scaling solution in the freeze frame (C.10), H ≈ √
R/12 = √

φmin/12 =
μ/

√
3. The time evolution of χ induces additional terms in the field equation for φ which do 

not, however, affect the stability of the model. For χ 	 √
Cμ we can to a good approximation 

neglect the influence of the term ∼ CR2 and set C = 0.
We next turn to solutions in primordial cosmology that feature small values of χ . Expanding 

V ′ in powers of χ2/2Cφ

V ′ = M4

8C
+ M4

8C2φ2
(2μ2 − φ)χ2 + · · · , (D.17)

we find a positive quadratic term ∼ χ2 for φ < 2μ2, while it turns negative for φ > 2μ2. The 
field equations admit the solution

χ = 0 , φ = φ0 = const. , H 2 = M2

24C
. (D.18)

Recalling the relation between φ and the curvature scalar in the freeze frame this corresponds to 
the family of asymptotic solutions (C.8). For a stable kinetic term this solution is stable for φ0 <

2μ2 and unstable for φ0 > 2μ2. In accordance with the findings of Appendix C (cf. eq. (C.9)), 
the scalar field χ increases (for increasing time) for φ0 = 12H 2

0 > 2μ2, while it goes to zero 
for φ0 = 12H 2

0 < 2μ2. We observe the difference of the Hubble parameter in the freeze frame 
(denoted here by H0) from the one in the Einstein frame with two scalars, as in eq. (D.18). All 
values of H0 in the freeze frame correspond to the same H in eq. (D.18), while the corresponding 
value of φ0 reflects H0.

The detailed discussion of the dynamics for small χ requires an understanding of the kinetic 
term. Its qualitative behavior depends on σ . For σ < 2 we can neglect in eq. (D.8) the term 
∼ (K + 6)χ2 as compared to 2Cφ. In the region of small enough χ the kinetic term becomes 
then block diagonal

L′
kin = 3M2

4φ2
∂μφ∂μφ + M2

4Cφ
∂μχ∂μχ. (D.19)

In this form we can find a field basis with canonical kinetic terms rather easily.
For φ > 0 we define

ϕ =
√

3

2
M ln(φ/μ2),

χ̃ = M√
2Cφ

χ, (D.20)

such that the kinetic term (D.19) takes a canonical form,

L′
kin = 1

2
∂μϕ∂μϕ + 1

2
∂μχ̃∂μχ̃, (D.21)

with mixed derivatives ∼ χ̃∂μϕ∂μχ̃ again subleading. In terms of these fields the potential reads

V ′ = M4

8C
+ M2

4C

[
2 exp

(
−
√

2

3

ϕ

M

)
− 1

]
χ̃2. (D.22)

For ϕ/M <
√

3/2 ln 2 the quadratic terms ∼ χ̃2 is positive, while it turns negative for larger 
values of ϕ. The cosmologies discussed in the main text, where the solution H = H0, χ = 0 is 
unstable such that any perturbation in χ increases, correspond to a negative quadratic term.
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For σ > 2 the term ∼ (K + 6)χ2 in eq. (D.8) diverges for χ → 0. The kinetic term takes now 
for χ → 0 the approximate form

L′
kin = 3M2

4φ2
∂μφ∂μφ + M2mσ

8C2φ2
χ2−σ ∂μχ∂μχ. (D.23)

The field basis with canonical kinetic terms retains eq. (D.20) for ϕ, while the other degree of 
freedom is given by

χ̂ = Mm
σ
2

|Cφ|(4 − σ)
χ

4−σ
2 . (D.24)

For σ > 4 small values of χ correspond to large negative values of χ̂ , similar to χR in eq. (127), 
while for 2 < σ < 4 one has χ̂ → 0 for χ → 0. The potential (D.17) reads

V ′ = M4

8C
+ M4

8C2

∣∣C(4 − σ)
∣∣ 4

4−σ

(μ

m

) 2σ
4−σ

× exp

(
σ

4 − σ

√
2

3

ϕ

M

)[
2 exp

(
−
√

2

3

ϕ

M

)
− 1

]∣∣∣∣ χ̂M
∣∣∣∣

4
4−σ

. (D.25)

The stability in the χ̂ -direction depends on ϕ in a way similar to the case σ < 2, but the de-
pendence on χ̂ is no longer harmonic. For the example σ = 3 the χ̂ -dependent part is quartic, 
	V ′ ∼ χ̂4. For σ > 4 one encounters negative powers of χ̂ .

D.2. Periodic crossing of “big bang singularity”?

In the Einstein frame an oscillation of χ corresponds to a periodic crossing of the big bang 
singularity. One may wonder if such a behavior is possible within our model. For this purpose it 
is instructive to discuss solutions where ϕ is small enough such that χ = 0 becomes attractive as 
time increases. We focus on σ < 2 with a harmonic potential (D.22) for χ̃ . We are interested to 
find out under which conditions there are oscillations around χ̃ = 0. For this purpose we investi-
gate cosmological solutions that are specified by fixing χ̃, ˙̃χ, ϕ and ϕ̇ at some time t0. We choose 
solutions for which χ̃2(t0)/M

2 
 1, such that the approximation (D.17) is valid, for example 
χ̃ (t0) = 0, ˙̃χ(t0) = c0M

2. We also consider 0 < φ(t0) < μ2, corresponding to negative ϕ(t0), 
and take ϕ̇(t0) = 0. For not too large c0 the potential V ′ is essentially constant, corresponding to 
an exponential expansion of the scale factor with

H = ± M√
24C

. (D.26)

The scalar field χ̃ could oscillate around zero, according to the effective field equation

¨̃χ + 3H ˙̃χ + m̃2(ϕ)χ̃ = 0,

m̃2(ϕ) = M2

C

[
exp
(
−
√

2

3

ϕ

M

)
− 1

2

]
, (D.27)

provided that m̃ changes only slowly on the time scale of the inverse frequency. One obtains
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χ̃ = c0M
2

ω0
exp

(
−3H(t − t0)

2

)
sin
(
ω(ϕ)(t − t0)

)
,

ω2(ϕ) = M2

C

[
exp
(
−
√

2

3

ϕ

M

)
− 9

32

]
, (D.28)

with ω0 = ω(ϕ0) = ω
(
ϕ(t0)

)
. For negative ϕ these oscillations are fast compared to the Hubble 

parameter

ω2

H 2
= 24 exp

(
−
√

2

3

ϕ

M

)
− 27

4
. (D.29)

They are damped for positive H and increase for negative H .
During the oscillations the average value of χ̃2 is given by

〈χ̃2〉 = c2
0M

4

2ω2
0

exp
(−3H(t − t0)

)
. (D.30)

Inserting this into the potential (D.22) yields an effective exponential potential for ϕ which can 
be approximated for sufficiently negative ϕ by

V ′
eff(ϕ) = M4

8C
+ c2

0M
4

4
exp

[
−
√

2

3

ϕ − ϕ0

M
− 3H(t − t0)

]
. (D.31)

The field equation for ϕ,

ϕ̈ + 3Hϕ̇ = c2
0M

3

√
24

exp

(
−
√

2

3

ϕ − ϕ0

M
− 3H(t − t0)

)
, (D.32)

can be solved approximately by neglecting the term ∼ ϕ̈. This results in a relative change of 
m̃2(ϕ),

∂t ln m̃2(ϕ) = −
√

6Cc2(t)M

9
exp

(
−
√

2

3

ϕ − ϕ0

M

)
− 3H,

c2(t) = c2
0 exp

(−3H(t − t0)
)
. (D.33)

For consistency of our computation of oscillations the relative change per oscillation period, 
ω−1∂t ln m̃2, has to be small compared to one. Near t0 it is indeed small provided that c2

0 is small 
enough. We may take ϕ ≈ ϕ0 and use exp(ϕ0/

√
6M) 
 √

3, as required by ω 	 H . For a given 
value of ϕ0 one has an upper bound on c2

0 such that oscillations take place. This bound gets 
higher if ϕ0 moves to smaller values.

Our discussion shows that a periodic crossing of the big bang singularity may indeed occur in 
our model. It is not clear under what circumstances an initial oscillatory behavior can turn into a 
realistic cosmology at later times. For positive H the amplitude of the oscillation of χ̃ decreases 
with increasing time. If this behavior continues scale symmetry is asymptotically realized for 
large t and all particles are massless. The oscillatory behavior with decreasing amplitude could 
be stopped, however, if ϕ increases towards positive values such that V (ϕ, χ̃ ) becomes unstable 
in the χ̃ -direction.
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Appendix E. Variable gravity with additional constant coefficient of curvature term

In this appendix we investigate a general class of variable gravity models with effective action

� =
∫
x

√
g̃
{
−1

2
ξ(χ̃2 + m̃2)R̃ + K̃(χ̃)

2
∂μχ̃∂μχ̃ + Ṽ (χ̃)

}
, (E.1)

with constant coefficients ξ and m̃2. This addresses the question to what extent the omission of a 
curvature term with constant coefficient in the action (2) is a crucial ingredient for our scenario 
or rather a matter of convenience. For easy comparison we will map the action (E.1) to the 
kinetial crossover form (2) by suitable field transformations. In particular, we will find that the 
simple case of a constant potential Ṽ (χ̃) = Ṽ0 or, more generally, Ṽ (χ̃ → 0) → Ṽ0, can realize 
a crossover scenario very similar to the one discussed in the main text.

An important feature of the action (E.1) is most easily understood in the Einstein frame, where 
the potential becomes

VE(χ̃) = M4Ṽ (χ̃)

ξ2(χ̃2 + m̃2)2
. (E.2)

Depending on the form of Ṽ (χ̃) the potential VE(χ̃) may not be a monotonic function. For the 
example Ṽ = μ2χ̃2 one finds a maximum of VE for χ̃ = m̃. Such models can still provide for 
a satisfactory description of inflation if the initial value of χ̃ is close to the maximum of VE . 
Nevertheless, such a setting destroys somewhat the simplicity and beauty of a crossover from a 
fixed point at χ̃ = 0 to another one for χ̃ → ∞.

For a large class of potentials Ṽ no maximum of VE occurs and VE(χ̃) is a monotonic func-
tion. For example, this happens for a constant Ṽ (χ̃) = Ṽ0 or for Ṽ = Ṽ0 + μ2χ2 if Ṽ0 is large 
enough, cf. Ref. [3]. We will see that for this class of models the kinetial crossover is very similar 
to the one discussed in the main text.

Using the transformation

g̃μν = χ2

ξ(χ̃2 + m̃2)
gμν = χμ√

Ṽ
gμν,

χ̃2 =
√

Ṽ χ

ξμ
− m̃2, (E.3)

one finds indeed the effective action (2), where

B = 3

2
+
(

K̃X̃

ξ
+ 3

8
Ã2

)
D̃2 + 3

2
ÃD̃, (E.4)

with

Ã = ∂ ln Ṽ

∂ ln χ̃
, X̃ = χ̃2

χ̃2 + m̃2
= 1 − ξμm̃2√

Ṽ χ
,

D̃ = ∂ ln χ̃

∂ lnχ
= 2

4X̃ − Ã
. (E.5)
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To be specific, we take

Ṽ = μ̃4−Ãχ̃ Ã (E.6)

with constant Ã.
For 0 < Ã < 4 we observe that D̃ and therefore B becomes singular for X̃c = Ã/4. This sin-

gularity corresponds to the maximum of the potential in the Einstein frame VE ∼ Ṽ /(χ̃2 + m̃2)2. 
One may employ the freeze frame for solutions where X̃ �= X̃c and note the natural occurrence 
of large values for B for X̃ near X̃c. Inflationary models of this type have been discussed in 
Ref. [68].

We observe that B vanishes for χ̃ → 0, X̃ → 0, according to

B = 3

2

(
1 + ÃD̃

2

)2

+ K̃X̃D̃2

ξ

=
(

24X̃2 + 4K̃X̃

ξ

)
(4X̃ − Ã)−2. (E.7)

The limit χ̃ → 0 corresponds to χ → ∞,

χ = ξμ
Ã
2 −1χ̃− Ã

2 (χ̃2 + m̃2). (E.8)

Using

∂ ln X̃

∂ lnχ
= 4(1 − X̃)

4X̃ − Ã
, (E.9)

∂ lnB

∂ ln X̃
= 1 + 6X̃

6X̃ + K̃/ξ
− 8X̃

4X̃ − Ã
, (E.10)

we may compute σ = − ∂ ln B
∂ ln χ

. For χ̃ → 0 one finds for K̃(χ̃ → 0) > 0 a rather large anoma-

lous dimension σ = 4/Ã, which increases to σ = 8/Ã if K̃(χ̃ → 0) = 0. Solutions where χ̃
approaches zero for increasing time do not provide for an acceptable description of dark energy.

On the other hand, for Ã < 4 also the limit χ̃ → ∞ corresponds to χ → ∞. In this limit one 
has X̃ → 1, D̃ → 2

4−Ã
and therefore

B = 4(6 + K̃/ξ)

(4 − Ã)2
. (E.11)

Small values of B , as required for realistic dark energy, can be achieved if K̃(χ̃ → ∞) reaches 
−6ξ or a value slightly larger. Thus realistic cosmologies correspond to solutions where χ̃ in-

creases from a value close to χ̃c = m

√
Ã/(4 − Ã) to infinity.

For a constant Ṽ , i.e. Ã = 0, one finds

B = 3

2
+ K̃

4ξX̃
. (E.12)

The freeze frame is valid for the range χ > χc, χc = ξμm̃2
√

Ṽ , which corresponds to χ̃2 > 0. 
Again, one finds large B in the vicinity of the divergence for χ̃2 → 0, and corresponding models 
of inflation [4]. The leading behavior of B for χ̃ → 0 is given by
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B = K̃

4ξ

m̃2 + χ̃2

χ̃2
= K̃

4ξ

χ

χ − χc

,

χc = ξμm̃2

Ṽ
. (E.13)

The corresponding value for σ diverges for χ → χc,

σ = −∂ lnB

∂ lnχ
= χc

χ − χc

− ∂ ln K̃

∂ lnχ
=

χc − χ
2

∂ ln K̃
∂ ln χ̃

χ − χc

. (E.14)

For χ > χc it drops rather rapidly, however. Estimating for constant K̃ the value σ(N) at horizon 
crossing according to eq. (48) yields

σ(N) =
(

8ζN

K̃
− 1

)−1

. (E.15)

For suitable values of K̃/ξ one may obtain values of σ(N) comparable to the ones discussed 
in the main text even for constant K̃ . On the other hand, for ∂ ln K̃/∂ ln χ̃ = −σ̃ and horizon 
crossing in the region χ(N) 	 χc , one finds

σ = σ̃

2
. (E.16)

This value constitutes a lower bound for σ .
The properties of the UV-fixed point for m̃2 > 0 and constant Ṽ differ from the ones discussed 

in Section 2. For ξm̃2 = c1μ
2 and Ṽ = c2μ

4 the dimensionless ratios c1 and c2 take finite con-
stant values for μ/χ → ∞. This type of UV-fixed point resembles the one found in the flow of 
the effective average action [12,13] if one identifies μ with the renormalization scale k.

For Ã < 0 the potential Ṽ diverges for χ̃ → 0. The limit χ̃ → 0 corresponds to χ → 0, while 
for χ̃ → ∞ one has χ → ∞. This setting is very close to the one discussed in the main text. 
A divergence of B for χ → 0 requires an increase of K̃ for χ̃ → 0 stronger than χ̃−2. Large 
values of B arise rather naturally for small χ if |Ã| is small. On the other hand, small values of 
B for χ → ∞ occur if K̃(χ̃ → ∞)/ξ is close to −6.

We conclude that for the models of eq. (E.1) a realistic description of dark energy in the limit 
of large χ̃ requires a kinetial close to the stability bound at K̃/ξ = −6. In the limit χ̃ → ∞ one 
simply may neglect m̂2 and absorb ξ by a suitable rescaling of χ̃ . For χ̃ → 0 stability requires 
K̃(χ̃ → 0) ≥ 0 if m̂2 > 0. A variation of the kinetial K̃(χ̃) is therefore always required for 
realistic models. The large values of B(χ̃ → 0) (or B(χ̃ → χ̃max) in case of a maximum of 
VE) needed for inflation can partially be induced as an effect of the term ∼ m̃2R. The crossover 
scenario discussed in the main text is realized if Ṽ (χ̃ → 0) diverges, Ã < 0. Also the behavior 
Ṽ (χ̃ → 0) → const. (Ã = 0) can describe a crossover from an UV-fixed point at χ̃ = 0 to an 
IR-fixed point for χ̃ → ∞. In the freeze frame the UV-fixed point occurs at χ = χc �= 0 in this 
case.
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