16 research outputs found

    Comparative analysis of whole plant, flower and root extracts of Chamomilla recutita L. and characteristic pure compounds reveals differential anti-inflammatory effects on human T cells

    Get PDF
    IntroductionChronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells.MethodsPhytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels.ResultsThe tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity.ConclusionOur results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells

    Оценка риска и расчет времени эвакуации и блокировки эвакуационных выходов МБОУ СОШ № 2 г. Юрги

    Get PDF
    Цель работы – оценка индивидуального пожарного риска в здании средней общеобразовательной школе №2 города Юрги на соответствие нормативным значениям. В работе проведен литературный обзор по вопросам состояния проблем обеспечения пожарной безопасности в образовательных учреждениях и оценки рисков. Рассчитаны время эвакуации, время блокирования эвакуационных выходов опасными факторами пожара и индивидуальный пожарный риск. Разработана декларация пожарной безопасности.The aim of the work is to assess the individual fire risk in the building of the secondary school №2 of the city of Yurga for compliance with normative values. A literature review on the state of problems of providing fire safety in educational institutions and risk assessment was conducted. Time of evacuation, time of blocking of evacuation exits by dangerous factors of a fire and individual fire risk are calculated. A declaration of fire safety was developed

    Antioxidant, Cytotoxic, and Antimicrobial Activities of <i>Glycyrrhiza glabra</i> L., <i>Paeonia lactiflora</i> Pall., and <i>Eriobotrya japonica</i> (Thunb.) Lindl. Extracts

    No full text
    Background: The phytochemical composition, antioxidant, cytotoxic, and antimicrobial activities of a methanol extract from Glycyrrhiza glabra L. (Ge), a 50% ethanol (in water) extract from Paeonia lactiflora Pall. (Pe), and a 96% ethanol extract from Eriobotrya japonica (Thunb.) Lindl. (Ue) were investigated. Methods: The phytochemical profiles of the extracts were analyzed by LC-MS/MS. Antioxidant activity was evaluated by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2&#8242;-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals and reducing ferric complexes, and the total phenolic content was tested with the Folin&#8211;Ciocalteu method. Cytotoxicity was determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in murine macrophage RAW 264.7 cells. Antimicrobial activity of the three plant extracts was investigated against six bacterial strains with the broth microdilution method. Results: Only Pe showed high antioxidant activities compared to the positive controls ascorbic acid and (&#8722;)-epigallocatechin gallate (EGCG) in DPPH assay; and generally the antioxidant activity order was ascorbic acid or EGCG &gt; Pe &gt; Ue &gt; Ge. The three plant extracts did not show strong cytotoxicity against RAW 264.7 cells after 24 h treatment with IC50 values above 60.53 &#177; 4.03 &#956;g/mL. Ue was not toxic against the six tested bacterial strains, with minimal inhibitory concentration (MIC) values above 5 mg/mL. Ge showed medium antibacterial activity against Acinetobacter bohemicus, Kocuria kristinae, Micrococcus luteus, Staphylococcus auricularis, and Bacillus megaterium with MICs between 0.31 and 1.25 mg/mL. Pe inhibited the growth of Acinetobacter bohemicus, Micrococcus luteus, and Bacillus megaterium at a MIC of 0.08 mg/mL. Conclusions: The three extracts were low-cytotoxic, but Pe exhibited effective DPPH radical scavenging ability and good antibacterial activity; Ue did not show antioxidant or antibacterial activity; Ge had no antioxidant potential, but medium antibacterial ability against five bacteria strains. Pe and Ge could be further studied for their potential to be developed as antioxidant or antibacterial candidates

    What do minerals in the feces of Bearded Vultures reveal about their dietary habits?

    No full text
    The diet of Bearded Vultures Gypaetus barbatus consists mainly of bones, which are completely digested in the gastrointestinal tract, unwanted bone minerals being discarded via the feces. Chemical analyses of feces therefore provide a noninvasive technique for studying the diet of this species. We analysed the inorganic and organic remains in feces collected from Bearded Vulture nests in the Spanish Pyrenees and discussed these results with the diet of individuals determined by video camera observations. Of the food items delivered to the nest, taxonomically 65% were bone fragments of Ovis/Capra spp. (range 56–75%) and anatomically 76% (74–81%) bones from the extremities, indicating a selective preference. At least 15% of the diet was meat based, mainly originating from small prey (e.g. small carnivores, birds). The fecal analyses show that calcium and phosphorus are the most abundant mineral constituents, accounting for 41.3–44.4% of the mineral part of the feces. Among the minor elements identified, the variation in the concentrations of iron, silicon and zinc suggest differences in food selection between territories, although this could be related to varying amounts of accidentally ingested soil particles present in the food. We found variation in the content of uric acid in the feces, ranging between 0.5 and 4.6%. Higher values of uric acid might be due to a more meat or marrow bone-based diet. However, no relationship was found between the amount of calcium and uric acid levels, suggesting that the metabolites of meat digestion (uric acid) and those of bone digestion (calcium) are not negatively correlated as expected. In conclusion, our chemical analyses of feces collected from the nests of Bearded Vultures confirm that their diet consists mainly of bone remains and that these bones are digested completely. However, the direct observations of the prey items delivered to the nest produced more detailed information than the chemical analyses.This project was partially funded by Ministerio de Ciencia, Innovación y Universidades (project RTI2018-099609-B-C22).Peer reviewe

    Table_2_Comparative analysis of whole plant, flower and root extracts of Chamomilla recutita L. and characteristic pure compounds reveals differential anti-inflammatory effects on human T cells.pdf

    No full text
    IntroductionChronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells.MethodsPhytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels.ResultsThe tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity.ConclusionOur results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.</p

    DataSheet_1_Comparative analysis of whole plant, flower and root extracts of Chamomilla recutita L. and characteristic pure compounds reveals differential anti-inflammatory effects on human T cells.pdf

    No full text
    IntroductionChronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells.MethodsPhytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels.ResultsThe tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity.ConclusionOur results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.</p

    Table_1_Comparative analysis of whole plant, flower and root extracts of Chamomilla recutita L. and characteristic pure compounds reveals differential anti-inflammatory effects on human T cells.pdf

    No full text
    IntroductionChronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells.MethodsPhytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels.ResultsThe tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity.ConclusionOur results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.</p
    corecore