7 research outputs found

    Distinguishing blaKPC -gene-containing IncF plasmids from epidemiologically related and unrelated Enterobacteriaceae based on short- and long-read sequence data

    Get PDF
    BACKGROUND: Limited information is available on whether blaKPC -containing plasmids from isolates in a hospital outbreak can be differentiated from epidemiologically unrelated blaKPC-containing plasmids based on sequence data. This study aimed to evaluate the performance of three approaches to distinguish epidemiologically related from unrelated blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids. METHOD: Epidemiologically related isolates, were short- and long-read whole genome sequenced. A hybrid assembly was performed and plasmid sequences were extracted from the assembly graph. Epidemiologically unrelated plasmid sequences were extracted from the GenBank. Pairwise comparisons were performed of epidemiologically related and unrelated plasmids based on SNP differences using snippy, phylogenetic distance using Roary and using a similarity index that penalizes size differences between plasmids (Stoesser-index). The percentage of pairwise comparisons misclassified as genetically related or as clonally unrelated was determined using different genetic thresholds for genetic relatedness. RESULTS: The ranges in number of SNP differences, Roary phylogenetic distance, and Stoesser-index overlapped between the epidemiologically related and unrelated plasmids. When using a genetic similarity threshold that classified 100% of epidemiologically related plasmid pairs as genetically related, the percentages of plasmids misclassified as epidemiologically related ranged from 6.7% (Roary) to 20.8% (Stoesser-index). DISCUSSION: Although epidemiologically related plasmids can be distinguished from unrelated plasmids based on genetic differences, blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids show a high degree of sequence similarity. The phylogenetic distance as determined using Roary showed the highest degree of discriminatory power between the epidemiologically related and unrelated plasmids

    Duration of rectal colonization with extended-spectrum beta-lactamase-producing Escherichia coli: results of an open, dynamic cohort study in Dutch nursing home residents (2013–2019)

    Get PDF
    Background: In 2016, a study in a Dutch nursing home showed prolonged colonization duration of extended-spectrum β-lactamase-producing (ESBL)-ST131 compared to ESBL-non-ST131. In this study, we assessed the duration of rectal ESBL-producing E. coli (ESBL-EC) colonization in residents in the same nursing home for an extended period of six years. We aimed to estimate the influence of a possible bias when follow up is started during an outbreak. Methods: Between 2013 and 2019, repetitive point prevalence surveys were performed by culturing rectal or faecal swabs from all residents. Kaplan–Meier survival analysis was performed to calculate the median time to clearance of ESBL-EC with a log-rank analysis to test for differences between ESBL-ST131 and ESBL-non-ST131. Results: The study showed a median time to clearance of 13.0 months (95% CI 0.0–27.9) for ESBL-ST131 compared to 11.2 months (95% CI 4.8–17.6) for ESBL-non-ST131 (p = 0.044). In the subgroup analysis of residents who were ESBL-EC positive in their first survey, the median time to clearance for ST131 was 59.7 months (95% CI 23.7–95.6) compared to 16.2 months (95% CI 2.1–30.4) for ESBL-non-ST131 (p = 0.036). In the subgroup analysis of residents who acquired ESBL-EC, the median time to clearance for ST131 was 7.2 months (95% CI 2.1–12.2) compared to 7.9 months (95% CI 0.0–18.3) for ESBL-non-ST131 (p = 0.718). The median time to clearance in the ESBL-ST131 group was significantly longer in residents who were ESBL-ST131 colonised upon entering the study than in residents who acquired ESBL-ST131 during the study (p = 0.001). Conclusion: A prolonged colonization with ESBL-ST131 was only found in the subgroup who was ESBL-EC positive upon entering the study. The prolonged duration with ESBL-ST131 in the previous study was probably biased by factors that occured during (the start of) the outbreak

    Next-Generation Sequence Analysis Reveals Transfer of Methicillin Resistance to a Methicillin-Susceptible Staphylococcus aureus Strain That Subsequently Caused a Methicillin-Resistant Staphylococcus aureus Outbreak: a Descriptive Study.

    No full text
    Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCCmec). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of methicillin-resistant Staphylococcus aureus (MRSA) but has been rarely observed in real time. In 2012, an outbreak occurred involving a health care worker (HCW) and three patients, all carrying a fusidic acid-resistant MRSA strain. The husband of the HCW was screened for MRSA carriage, but only a methicillin-susceptible S. aureus (MSSA) strain, which was also resistant to fusidic acid, was detected. Multiple-locus variable-number tandem-repeat analysis (MLVA) typing showed that both the MSSA and MRSA isolates were MT4053-MC0005. This finding led to the hypothesis that the MSSA strain acquired the SCCmec and subsequently caused an outbreak. To support this hypothesis, next-generation sequencing of the MSSA and MRSA isolates was performed. This study showed that the MSSA isolate clustered closely with the outbreak isolates based on whole-genome multilocus sequence typing and single-nucleotide polymorphism (SNP) analysis, with a genetic distance of 17 genes and 44 SNPs, respectively. Remarkably, there were relatively large differences in the mobile genetic elements in strains within and between individuals. The limited genetic distance between the MSSA and MRSA isolates in combination with a clear epidemiologic link supports the hypothesis that the MSSA isolate acquired a SCCmec and that the resulting MRSA strain caused an outbreak

    SARS-CoV-2 Alpha-Variant Outbreak Amongst a Partially Vaccinated Long-Term Care Facility Population in The Netherlands—Phylogenetic Analysis and Infection Control Observations

    Get PDF
    Despite extensive vaccination and booster programs, SARS-CoV-2 outbreaks in long-term care facilities (LTCF) continue to occur. We retrospectively describe a SARS-CoV-2 outbreak amongst a partially vaccinated LTCF population in The Netherlands which occurred in March 2021. The facility comprised three floors functioning as separate wards. Nasopharyngeal swabs for SARS-CoV-2 qRT-PCR were obtained from residents and staff presenting with COVID-19-like symptoms and from all residents and staff during two point prevalence screenings (PPS). Samples meeting technical criteria were included for phylogenetic analysis. Positive SARS-CoV-2 qRT-PCR were obtained from 11 (18%) of 61 residents and 8 (7%) of 110 staff members between March 8 and March 25. Seven (37%) cases and five (63%) vaccinated cases were diagnosed through PPS. Cases were found on all wards. Phylogenetic analysis (n = 11) showed a maximum difference of four nucleotides between sequences on the outer branches of the tree, but identified two identical sequences on the root differing maximum two nucleotides from all other sequences, suggesting all did belong to the same cluster. Our results imply that PPS is useful in containing SARS-CoV-2 outbreaks amongst (vaccinated) LTCF populations, as an entire LTCF might behave as a single epidemiological unit and it is preferable to maximize the number of samples included for phylogenetic analysis
    corecore