7 research outputs found

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    Exploring Post-translational Arginine Modification Using Chemically Synthesized Methylglyoxal Hydroimidazolones

    No full text
    The methylglyoxal-derived hydroimidazolones (MG-Hs, Figure 1A) comprise the most prevalent class of non-enzymatic, post-translational modifications of protein arginine residues found in nature. These adducts form spontaneously in the human body, and are also present at high levels in the human diet. Despite numerous lines of evidence suggesting that MG-H–arginine adducts play critical roles in both healthy and disease physiology in humans, detailed studies of these molecules have been hindered by a lack of general synthetic strategies for their preparation in chemically homogeneous form, and on scales sufficient to enable detailed biochemical and cellular investigations. To address this limitation, we have developed efficient, multi-gram-scale syntheses of all MG-H–amino acid monomers in 2–3 steps starting from inexpensive, readily available starting materials. Thus, MG-H derivatives were readily incorporated into oligopeptides site-specifically using standard solid-phase peptide synthesis (SPPS). Access to synthetic MG-H-peptide adducts has enabled detailed biochemical investigations, which have revealed a series of novel and unexpected findings. First, one of the three MG-H isomers – MG-H3 – was found to possess potent, pH-dependent antioxidant properties in biochemical and cellular assays intended to replicate redox processes that occur in vivo. Computational and mechanistic studies suggest that MG-H3-containing constructs are capable of participating in mechanistically distinct H-atom-transfer and single-electron-transfer oxidation processes. Notably, the product of MG-H3 oxidation was unexpectedly observed to disassemble into the fully unmodified arginine residue and pyruvate in aqueous solution. We believe these observations to reflect meaningfully on the role(s) of MG-H–protein adducts in human physiology, and expect the synthetic reagents reported herein to enable investigations into non-enzymatic protein regulation at an unprecedented level of detail
    corecore