194 research outputs found

    Characterizing Operations Preserving Separability Measures via Linear Preserver Problems

    Full text link
    We use classical results from the theory of linear preserver problems to characterize operators that send the set of pure states with Schmidt rank no greater than k back into itself, extending known results characterizing operators that send separable pure states to separable pure states. We also provide a new proof of an analogous statement in the multipartite setting. We use these results to develop a bipartite version of a classical result about the structure of maps that preserve rank-1 operators and then characterize the isometries for two families of norms that have recently been studied in quantum information theory. We see in particular that for k at least 2 the operator norms induced by states with Schmidt rank k are invariant only under local unitaries, the swap operator and the transpose map. However, in the k = 1 case there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3 simplified and clarifie

    Ceramide Activates the Stress-activated Protein Kinases

    Get PDF
    Tumor necrosis factor alpha (TNF alpha) activates the stress-activated protein kinases (SAPKs, also known as Jun nuclear kinases or JNKs) resulting in the stimulation of AP-1-dependent gene transcription and induces the translocation of NF kappa B to the nucleus resulting in the stimulation of NF kappa B-dependent gene transcription. A potential second messenger for these signaling pathways is ceramide, which is generated when TNF alpha activates sphingomyelinases. We show that treatment of HL-60 human promyelocytic cells with exogenous sphingomyelinase leads to rapid stimulation of JNK/SAPK activity, an effect not mimicked by treatment with phospholipase A2, C, or D. Further, JNK/SAPK activity is stimulated 2.7- and 2.8-fold, respectively, in cells exposed to C2-ceramide (5 microM) or TNF alpha (10 ng/ml). The prolonged stimulation of this kinase activity by C2-ceramide is similar to that previously reported for TNF alpha. In contrast, the related mitogen-activated protein kinases ERK1 and ERK2 are weakly stimulated following TNF alpha treatment (1.5-fold) and are inhibited by C2-ceramide treatment. TNF alpha also potently stimulates NF-kappa B DNA binding activity and transcriptional activity, but these effects are not mimicked by addition of C2-ceramide or sphingomyelinase to intact cells. Furthermore, TNF alpha, sphingomyelinase, and C2-ceramide induce c-jun, a gene that is stimulated by the ATF-2 and c-Jun transcription factors. These data suggest that ceramide may act as a second messenger for a subset of TNF alpha's biochemical and biological effects

    IL-33-dependent Type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo

    Get PDF
    Rationale: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cellโ€“derived cytokine IL-33 plays a central role in exacerbation pathogenesis through augmentation of type 2 inflammation. Objectives: To assess whether rhinovirus induces a type 2 inflammatory response in asthma in vivo and to define a role for IL-33 in this pathway. Methods: We used a human experimental model of rhinovirus infection and novel airway sampling techniques to measure IL-4, IL-5, IL-13, and IL-33 levels in the asthmatic and healthy airways during a rhinovirus infection. Additionally, we cultured human T cells and type 2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirusinfected bronchial epithelial cells (BECs) to assess type 2 cytokine production in the presence or absence of IL-33 receptor blockade. Measurements and Main Results: IL-4, IL-5, IL-13, and IL-33 are all induced by rhinovirus in the asthmatic airway in vivo and relate to exacerbation severity. Further, induction of IL-33 correlates with viral load and IL-5 and IL-13 levels. Rhinovirus infection of human primary BECs induced IL-33, and culture of human T cells and ILC2s with supernatants of rhinovirus-infected BECs strongly induced type 2 cytokines. This induction was entirely dependent on IL-33. Conclusions: IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo. Virus-induced IL-33 and IL-33โ€“responsive T cells and ILC2s are key mechanistic links between viral infection and exacerbation of asthma. IL-33 inhibition is a novel therapeutic approach for asthma exacerbation

    Epigenetics and the estrogen receptor

    Get PDF
    The position effect variegation in Drosophila and Schizosaccharomyces pombe, and higher-order chromatin structure regulation in yeast, is orchestrated by modifier genes of the Su(var) group, (e.g., histone deacetylases ([HDACs]), protein phosphatases) and enhancer E(Var) group (e.g., ATP [adenosine 5\u27-triphosphate]-dependent nucleosome remodeling proteins). Higher-order chromatin structure is regulated in part by covalent modification of the N-terminal histone tails of chromatin, and histone tails in turn serve as platforms for recruitment of signaling modules that include nonhistone proteins such as heterochromatin protein (HP1) and NuRD. Because the enzymes governing chromatin structure through covalent modifications of histones (acetylation, methylation, phosphorylation, ubiquitination) can also target nonhistone substrates, a mechanism is in place by which epigenetic regulatory processes can affect the function of these alternate substrates. The posttranslational modification of histones, through phosphorylation and acetylation at specific residues, alters chromatin structure in an orchestrated manner in response to specific signals and is considered the basis of a histone code. In an analogous manner, specific residues within transcription factors form a signaling module within the transcription factor to determine genetic target specificity and cellular fate. The architecture of these signaling cascades in transcription factors (SCITs) are poorly understood. The regulation of estrogen receptor (ERalpha) by enzymes that convey epigenetic signals is carefully orchestrated and is reviewed here

    Induction of Epithelial Mesenchimal Transition and Vasculogenesis in the Lenses of Dbl Oncogene Transgenic Mice

    Get PDF
    BACKGROUND: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. RESULTS: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT), such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. CONCLUSION: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial tissue

    Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    Get PDF
    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.National Institutes of Health (U.S.) (NIH grant P50-GM68762)National Institutes of Health (U.S.) (Grant U54-CA112967)United States. Dept. of Defense (Institute for Collaborative Biotechnologies

    Measuring Multi-Joint Stiffness during Single Movements: Numerical Validation of a Novel Time-Frequency Approach

    Get PDF
    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases

    The P2X1 receptor and platelet function

    Get PDF
    Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca2+, leading to shape change, movement of secretory granules and low levels of ฮฑIIbฮฒ3 integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques

    The elements of human cyclin D1 promoter and regulation involved

    Get PDF
    Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-า›B, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation
    • โ€ฆ
    corecore