10 research outputs found

    Modeling nitrogen cycling in a coastal fresh water sediment

    Get PDF
    Increased nitrogen (N) loading to coastal marine and freshwater systems is occurring worldwide as a result of human activities. Diagenetic processes in sediments can change the N availability in these systems, by supporting removal through denitrification and burial of organic N (Norg) or by enhancing N recycling. In this study, we use a reactive transport model (RTM) to examine N transformations in a coastal fresh water sediment and quantify N removal rates. We also assess the response of the sediment N cycle to environmental changes that may result from increased salinity which is planned to occur at the site as a result of an estuarine restoration project. Field results show that much of the Norg deposited on the sediment is currently remineralized to ammonium. A rapid removal of nitrate is observed in the sediment pore water, with the resulting nitrate reduction rate estimated to be 130 lmol N cm–2 yr–1. A model sensitivity study was conducted altering the distribution of nitrate reduction between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification. These results show a 40% decline in sediment N removal as NO3 – reduction shifts from denitrification to DNRA. This decreased N removal leads to a shift in sediment-water exchange flux of dissolved inorganic nitrogen (DIN) from near zero with denitrification to 133 lmol N cm–2 yr–1 if DNRA is the dominant pathway. The response to salinization includes a shortterm release of adsorbed ammonium. Additional changes expected to result from the estuarine restoration include: lower NO3 – concentrations and greater SO4 2– concentrations in the bottom water, decreased nitrification rates, and increased sediment mixing. The effect of these changes on net DIN flux and N removal vary based on the distribution of DNRA versus denitrification, illustrating the need for a better understanding of factors controlling this competition

    Pregabalin and pain after total knee arthroplasty: a double-blind, randomized, placebo-controlled, multidose trial †

    No full text
    BACKGROUND: Pregabalin may reduce postoperative pain and opioid use. Higher doses may be more effective, but may cause sedation and confusion. This prospective, randomized, blinded, placebo-controlled study tested the hypothesis that pregabalin reduces pain at 2 weeks after total knee arthroplasty, but increases drowsiness and confusion. METHODS: Patients (30 per group) received capsules containing pregabalin (0, 50, 100, or 150 mg); two capsules before surgery, one capsule twice a day until postoperative day (POD) 14, one on POD15, and one on POD16. Multimodal analgesia included femoral nerve block, epidural analgesia, oxycodone–paracetamol, and meloxicam. The primary outcome was pain with flexion (POD14). RESULTS: Pregabalin did not reduce pain at rest, with ambulation, or with flexion at 2 weeks (P=0.69, 0.23, and 0.90, respectively). Pregabalin increased POD1 drowsiness (34.5, 37.9, 55.2, and 58.6% in the 0, 50, 100, and 150 mg arms, respectively; P=0.030), but did not increase confusion (0, 3.5, 0, and 3.5%, respectively; P=0.75). Pregabalin had no effect on acute or chronic pain, opioid consumption, or analgesic side-effects. Pregabalin reduced POD14 patient satisfaction [1–10 scale, median (first quartile, third quartile): 9 (8, 10), 8 (7, 10), 8 (5, 9), and 8 (6, 9.3), respectively; P=0.023). Protocol compliance was 63% by POD14 (50.0, 70.0, 76.7, and 56.7% compliance, respectively), with no effect of dose on compliance. Per-protocol analysis of compliant patients showed no effect of pregabalin on pain scores. CONCLUSIONS: Pregabalin had no beneficial effects, but increased sedation and decreased patient satisfaction. This study does not support routine perioperative pregabalin for total knee arthroplasty patients. CLINICAL TRIAL REGISTRATION. ClinicalTrials.gov: http://www.clinicaltrials.gov/ct2/show/study/NCT01333956

    40Ar/39Ar dating method

    No full text
    corecore