2 research outputs found

    Failure Investigation of an Intra-Manifold Explosion in a Horizontally-Mounted 870 lbf Reaction Control Thruster

    Get PDF
    In June 2010, an 870 lbf Space Shuttle Orbiter Reaction Control System Primary Thruster experienced an unintended shutdown during a test being performed at the NASA White Sands Test Facility. Subsequent removal and inspection of the thruster revealed permanent deformation and misalignment of the thruster valve mounting plate. Destructive evaluation determined that after three nominal firing sequences, the thruster had experienced an energetic event within the fuel (monomethylhydrazine) manifold at the start of the fourth firing sequence. The current understanding of the phenomenon of intra-manifold explosions in hypergolic bipropellant thrusters is documented in literature where it is colloquially referred to as a ZOT. The typical ZOT scenario involves operation of a thruster in a gravitational field with environmental pressures above the triple point pressure of the propellants. Post-firing, when the thruster valves are commanded closed, there remains a residual quantity of propellant in both the fuel and oxidizer (nitrogen tetroxide) injector manifolds known as the "dribble volume". In an ambient ground test configuration, these propellant volumes will drain from the injector manifolds but are impeded by the local atmospheric pressure. The evacuation of propellants from the thruster injector manifolds relies on the fluids vapor pressure to expel the liquid. The higher vapor pressure oxidizer will evacuate from the manifold before the lower vapor pressure fuel. The localized cooling resulting from the oxidizer boiling during manifold draining can result in fuel vapor migration and condensation in the oxidizer passage. The liquid fuel will then react with the oxidizer that enters the manifold during the next firing and may produce a localized high pressure reaction or explosion within the confines of the oxidizer injector manifold. The typical ZOT scenario was considered during this failure investigation, but was ultimately ruled out as a cause of the explosion. Converse to the typical ZOT failure mechanism, the failure of this particular thruster was determined to be the result of liquid oxidizer being present within the fuel manifold

    MAARSS: Magnet Architectures and Active Radiation Shielding Study

    Get PDF
    Protecting humans from space radiation is a major hurdle for human exploration of the solar system and beyond. Like on Earth, large magnetic fields surrounding a spaceship would deflect charged particles away from the habitat region and reduce the radiation dose to acceptable limits. The objective of this study is to determine the feasibility of current state of the art (SOA) high temperature superconducting (HTS) magnets as a means to protect crew from space radiation exposure on long duration missions beyond Low Earth Orbit (LEO). The study will look at architecture concepts to deflect high energy Galactic Cosmic Radiation (GCR) and Solar Proton Events (SPEs). Mass, power, and shielding efficiency will be considered and compared with current passive shielding capabilities. This report will walk the reader through several designs considered over the one year study and discuss the multiple parameters that should be evaluated for magnetic shielding. The study team eventually down-selects to a scalable light weight solenoid architecture that is launchable and then deployable using magnetic pressure to expand large diameter coils. Benefitting from the low temperature and high vacuum environment of deep space, existing high-temperature superconductors make such radiation shields realistic, near-term technical developments
    corecore