16 research outputs found

    Automated Sleep Apnea Quantification Based on Respiratory Movement

    Get PDF
    Obstructive sleep apnea (OSA) is a prevalent and treatable disorder of neurological and medical importance that is traditionally diagnosed through multi-channel laboratory polysomnography(PSG). However, OSA testing is increasingly performed with portable home devices using limited physiological channels. We tested the hypothesis that single channel respiratory effort alone could support automated quantification of apnea and hypopnea events. We developed a respiratory event detection algorithm applied to thoracic strain-belt data from patients with variable degrees of sleep apnea. We optimized parameters on a training set (n=57) and then tested performance on a validation set (n=59). The optimized algorithm correlated significantly with manual scoring in the validation set (R2 = 0.73 for training set, R2 = 0.55 for validation set; p0.92 and >0.85 using apnea-hypopnea index cutoff values of 5 and 15, respectively. Our findings demonstrate that manually scored AHI values can be approximated from thoracic movements alone. This finding has potential applications for automating laboratory PSG analysis as well as improving the performance of limited channel home monitors

    Practice variability and efficacy of clonazepam, lorazepam, and midazolam in status epilepticus: A multicenter comparison.

    Get PDF
    OBJECTIVE: Benzodiazepines (BZD) are recommended as first-line treatment for status epilepticus (SE), with lorazepam (LZP) and midazolam (MDZ) being the most widely used drugs and part of current treatment guidelines. Clonazepam (CLZ) is also utilized in many countries; however, there is no systematic comparison of these agents for treatment of SE to date. METHODS: We identified all patients treated with CLZ, LZP, or MDZ as a first-line agent from a prospectively collected observational cohort of adult patients treated for SE in four tertiary care centers. Relative efficacies of CLZ, LZP, and MDZ were compared by assessing the risk of developing refractory SE and the number of antiseizure drugs (ASDs) required to control SE. RESULTS: Among 177 patients, 72 patients (40.62%) received CLZ, 82 patients (46.33%) LZP, and 23 (12.99%) MDZ; groups were similar in demographics and SE characteristics. Loading dose was considered insufficient in the majority of cases for LZP, with a similar rate (84%, 95%, and 87.5%) in the centers involved, and CLZ was used as recommended in 52% of patients. After adjustment for relevant variables, LZP was associated with an increased risk of refractoriness as compared to CLZ (odds ratio [OR] 6.4, 95% confidence interval [CI] 2.66-15.5) and with an increased number of ASDs needed for SE control (OR 4.35, 95% CI 1.8-10.49). SIGNIFICANCE: CLZ seems to be an effective alternative to LZP and MDZ. LZP is frequently underdosed in this setting. These findings are highly relevant, since they may impact daily practice

    Evaluation of a clinical tool for early etiology identification in status epilepticus.

    Get PDF
    OBJECTIVES: Because early etiologic identification is critical to select appropriate specific status epilepticus (SE) management, we aim to validate a clinical tool we developed that uses history and readily available investigations to guide prompt etiologic assessment. METHODS: This prospective multicenter study included all adult patients treated for SE of all but anoxic causes from four academic centers. The proposed tool is designed as a checklist covering frequent precipitating factors for SE. The study team completed the checklist at the time the patient was identified by electroencephalography (EEG) request. Only information available in the emergency department or at the time of in-hospital SE identification was used. Concordance between the etiology indicated by the tool and the determined etiology at hospital discharge was analyzed, together with interrater agreement. RESULTS: Two hundred twelve patients were included. Concordance between the etiology hypothesis generated using the tool and the finally determined etiology was 88.7% (95% confidence interval (CI) 86.4-89.8) (κ = 0.88). Interrater agreement was 83.3% (95% CI 80.4-96) (κ = 0.81). SIGNIFICANCE: This tool is valid and reliable for identification early the etiology of an SE. Physicians managing patients in SE may benefit from using it to identify promptly the underlying etiology, thus facilitating selection of the appropriate treatment

    Therapeutic coma for status epilepticus: Differing practices in a prospective multicenter study.

    Get PDF
    Our aim was to analyze and compare the use of therapeutic coma (TC) for refractory status epilepticus (SE) across different centers and its effect on outcome. Clinical data for all consecutive adults (>16 years) with SE of all etiologies (except postanoxic) admitted to 4 tertiary care centers belonging to Harvard Affiliated Hospitals (HAH) and the Centre Hospitalier Universitaire Vaudois (CHUV) were prospectively collected and analyzed for TC details, mortality, and duration of hospitalization. Two hundred thirty-six SE episodes in the CHUV and 126 in the HAH were identified. Both groups were homogeneous in demographics, comorbidities, SE characteristics, and Status Epilepticus Severity Score (STESS); TC was used in 25.4% of cases in HAH vs 9.75% in CHUV. After adjustment, TC use was associated with younger age, lower Charlson Comorbidity Index, increasing SE severity, refractory SE, and center (odds ratio 11.3 for HAH vs CHUV, 95% confidence interval 2.47-51.7). Mortality was associated with increasing Charlson Comorbidity Index and STESS, etiology, and refractory SE. Length of stay correlated with STESS, etiology, refractory SE, and use of TC (incidence rate ratio 1.6, 95% confidence interval 1.22-2.11). Use of TC for SE treatment seems markedly different between centers from the United States and Europe, and did not affect mortality considering the whole cohort. However, TC may increase length of hospital stay and related costs. This study provides Class III evidence that for patients with SE, TC does not significantly affect mortality. The study lacked the precision to exclude an important effect of TC on mortality

    Comparison of machine learning models for seizure prediction in hospitalized patients

    No full text
    Objective: To compare machine learning methods for predicting inpatient seizures risk and determine the feasibility of 1-h screening EEG to identify low-risk patients (<5% seizures risk in 48 h). Methods: The Critical Care EEG Monitoring Research Consortium (CCEMRC) multicenter database contains 7716 continuous EEGs (cEEG). Neural networks (NN), elastic net logistic regression (EN), and sparse linear integer model (RiskSLIM) were trained to predict seizures. RiskSLIM was used previously to generate 2HELPS2B model of seizure predictions. Data were divided into training (60% for model fitting) and evaluation (40% for model evaluation) cohorts. Performance was measured using area under the receiver operating curve (AUC), mean risk calibration (CAL), and negative predictive value (NPV). A secondary analysis was performed using Monte Carlo simulation (MCS) to normalize all EEG recordings to 48 h and use only the first hour of EEG as a “screening EEG” to generate predictions. Results: RiskSLIM recreated the 2HELPS2B model. All models had comparable AUC: evaluation cohort (NN: 0.85, EN: 0.84, 2HELPS2B: 0.83) and MCS (NN: 0.82, EN; 0.82, 2HELPS2B: 0.81) and NPV (absence of seizures in the group that the models predicted to be low risk): evaluation cohort (NN: 97%, EN: 97%, 2HELPS2B: 97%) and MCS (NN: 97%, EN: 99%, 2HELPS2B: 97%). 2HELPS2B model was able to identify the largest proportion of low-risk patients. Interpretation: For seizure risk stratification of hospitalized patients, the RiskSLIM generated 2HELPS2B model compares favorably to the complex NN and EN generated models. 2HELPS2B is able to accurately and quickly identify low-risk patients with only a 1-h screening EEG.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Estimating Total Cerebral Microinfarct Burden From Diffusion-Weighted Imaging

    No full text
    Conclusions-Detecting even a single DWI lesion suggests an annual incidence of hundreds of new CMI. The cumulative effects of these lesions may directly contribute to small-vessel-related vascular cognitive impairment

    Assessment of the Validity of the 2HELPS2B Score for Inpatient Seizure Risk Prediction

    No full text
    Importance: Seizure risk stratification is needed to boost inpatient seizure detection and to improve continuous electroencephalogram (cEEG) cost-effectiveness. 2HELPS2B can address this need but requires validation. Objective: To use an independent cohort to validate the 2HELPS2B score and develop a practical guide for its use. Design, Setting, and Participants: This multicenter retrospective medical record review analyzed clinical and EEG data from patients 18 years or older with a clinical indication for cEEG and an EEG duration of 12 hours or longer who were receiving consecutive cEEG at 6 centers from January 2012 to January 2019. 2HELPS2B was evaluated with the validation cohort using the mean calibration error (CAL), a measure of the difference between prediction and actual results. A Kaplan-Meier survival analysis was used to determine the duration of EEG monitoring to achieve a seizure risk of less than 5% based on the 2HELPS2B score calculated on first- hour (screening) EEG. Participants undergoing elective epilepsy monitoring and those who had experienced cardiac arrest were excluded. No participants who met the inclusion criteria were excluded. Main Outcomes and Measures: The main outcome was a CAL error of less than 5% in the validation cohort. Results: The study included 2111 participants (median age, 51 years; 1113 men [52.7%]; median EEG duration, 48 hours) and the primary outcome was met with a validation cohort CAL error of 4.0% compared with a CAL of 2.7% in the foundational cohort (P =.13). For the 2HELPS2B score calculated on only the first hour of EEG in those without seizures during that hour, the CAL error remained at less than 5.0% at 4.2% and allowed for stratifying patients into low- (2HELPS2B = 0; 25%) groups. Each of the categories had an associated minimum recommended duration of EEG monitoring to achieve at least a less than 5% risk of seizures, a 2HELPS2B score of 0 at 1-hour screening EEG, a 2HELPS2B score of 1 at 12 hours, and a 2HELPS2B score of 2 or greater at 24 hours. Conclusions and Relevance: In this study, 2HELPS2B was validated as a clinical tool to aid in seizure detection, clinical communication, and cEEG use in hospitalized patients. In patients without prior clinical seizures, a screening 1-hour EEG that showed no epileptiform findings was an adequate screen. In patients with any highly epileptiform EEG patterns during the first hour of EEG (ie, a 2HELPS2B score of ≥2), at least 24 hours of recording is recommended.SCOPUS: cp.jinfo:eu-repo/semantics/publishe
    corecore