349 research outputs found

    Quantum privacy and quantum coherence

    Full text link
    We derive a simple relation between a quantum channel's capacity to convey coherent (quantum) information and its usefulness for quantum cryptography.Comment: 6 pages RevTex; two short comments added 7 October 199

    Registrar wellness in Botswana: Measuring burnout and identifying ways to improve wellness

    Get PDF
    Background. Burnout during registrar training is high, especially in resource-limited settings where stressors are intensified. Burnout leads to decreased quality of life for doctors, poor job and patient satisfaction, and difficulty retaining doctors.Objectives. Primary: to measure burnout among registrars working at Princess Marina Hospital in Gaborone, Botswana. Secondary: to determine factors contributing to burnout and identify potential wellness interventions.Methods. The validated Maslach Burnout Inventory was used to measure the degree of emotional exhaustion, depersonalisation and personal accomplishment. Work-related difficulties and potential wellness interventions were explored through multiple-choice and open-ended questions.Results. Of 40 eligible registrars, 20 (50%) completed the survey. High levels of burnout were reported for emotional exhaustion in 65% (13/20), depersonalisation in 45% (9/20), and personal accomplishment in 35% (7/20) of registrars. A high degree of burnout was reported by 75% (15/20) of registrars in one or more domains. In the previous 7 days, registrars worked an average of 77 hours, took 1.5 overnight calls, slept 5.7 hours per night, and 53% (10/19) had ≥1 of their patients die. Five (25%) registrars considered leaving Botswana to work in another country, which correlated with those with the highest degree of burnout. The most common frustrations included insufficient salary and limited medical resources. Suggested interventions included improved mentorship and wellness lectures.Conclusions. There is a high degree of burnout, especially emotional exhaustion, among registrars. Encouragingly, most registrars have a desire to work in Botswana after training. Future research on improving registrar wellness in low-resource settings is urgently needed

    Indeterminate-length quantum coding

    Get PDF
    The quantum analogues of classical variable-length codes are indeterminate-length quantum codes, in which codewords may exist in superpositions of different lengths. This paper explores some of their properties. The length observable for such codes is governed by a quantum version of the Kraft-McMillan inequality. Indeterminate-length quantum codes also provide an alternate approach to quantum data compression.Comment: 32 page

    On asymptotic continuity of functions of quantum states

    Full text link
    A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this paper we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called it robustness under admixture. This allows us to show that relative entropy distance from a convex set including maximally mixed state is asymptotically continuous. Subsequently, we consider it arrowing - a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples.Comment: Minor corrections, version submitted for publicatio

    A Two-Tier Golgi-Based Control of Organelle Size Underpins the Functional Plasticity of Endothelial Cells

    Get PDF
    Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 μm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures (“quanta”) of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities

    Additivity and non-additivity of multipartite entanglement measures

    Full text link
    We study the additivity property of three multipartite entanglement measures, i.e. the geometric measure of entanglement (GM), the relative entropy of entanglement and the logarithmic global robustness. First, we show the additivity of GM of multipartite states with real and non-negative entries in the computational basis. Many states of experimental and theoretical interests have this property, e.g. Bell diagonal states, maximally correlated generalized Bell diagonal states, generalized Dicke states, the Smolin state, and the generalization of D\"{u}r's multipartite bound entangled states. We also prove the additivity of other two measures for some of these examples. Second, we show the non-additivity of GM of all antisymmetric states of three or more parties, and provide a unified explanation of the non-additivity of the three measures of the antisymmetric projector states. In particular, we derive analytical formulae of the three measures of one copy and two copies of the antisymmetric projector states respectively. Third, we show, with a statistical approach, that almost all multipartite pure states with sufficiently large number of parties are nearly maximally entangled with respect to GM and relative entropy of entanglement. However, their GM is not strong additive; what's more surprising, for generic pure states with real entries in the computational basis, GM of one copy and two copies, respectively, are almost equal. Hence, more states may be suitable for universal quantum computation, if measurements can be performed on two copies of the resource states. We also show that almost all multipartite pure states cannot be produced reversibly with the combination multipartite GHZ states under asymptotic LOCC, unless relative entropy of entanglement is non-additive for generic multipartite pure states.Comment: 45 pages, 4 figures. Proposition 23 and Theorem 24 are revised by correcting a minor error from Eq. (A.2), (A.3) and (A.4) in the published version. The abstract, introduction, and summary are also revised. All other conclusions are unchange

    Complementarity in classical dynamical systems

    Full text link
    The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an \emph{ad hoc} partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.Comment: 18 pages, no figure

    Spin and Rotations in Galois Field Quantum Mechanics

    Full text link
    We discuss the properties of Galois Field Quantum Mechanics constructed on a vector space over the finite Galois field GF(q). In particular, we look at 2-level systems analogous to spin, and discuss how SO(3) rotations could be embodied in such a system. We also consider two-particle `spin' correlations and show that the Clauser-Horne-Shimony-Holt (CHSH) inequality is nonetheless not violated in this model.Comment: 21 pages, 11 pdf figures, LaTeX. Uses iopart.cls. Revised introduction. Additional reference

    Update on pathology laboratory development and research in advancing regional cancer care in Malawi

    Get PDF
    The pathology laboratory at Kamuzu Central Hospital (KCH) in Lilongwe, Malawi was established in 2011. We published our initial experiences in laboratory development and telepathology in 2013 and 2016, respectively. The purpose of this paper is to provide an update on our work by highlighting the positive role laboratory development has played in improving regional cancer care and research. In addition, we provide a summary of the adult pathology data from specimens received between July 1, 2011, and May 31, 2019, with an emphasis on malignant diagnoses. We compare these summaries to estimates of cancer incidence in this region to identify gaps and future needs
    corecore