21 research outputs found

    Alpha beta T-cell graft depletion for allogeneic HSCT in adults with hematological malignancies

    Get PDF
    We conducted a multicenter prospective single-arm phase 1/2 study that assesses the outcome of alpha beta T-cell depleted allogeneic hematopoietic stem cell transplantation (allo-HSCT) of peripheral blood derived stem cells from matched related, or unrelated donors (10/10 and 9/10) in adults, with the incidence of acute graft-versus-host disease (aGVHD) as the primary end point at day 100. Thirty-five adults (median age, 59; range, 19-69 years) were enrolled. Conditioning consisted of antithymocyte globulin, busulfan, and fludarabine, followed by 28 days of mycophenolic acid after allo-HSCT. The minimal follow-up time was 24 months. The median number of infused CD34(+) cells and alpha beta T cells were 6.1 x 10(6) and 16.3 x 10(3) cells per kg, respectively. The cumulative incidence (CI) of aGVHD grades 2-4 and 3-4 at day 100 was 26% and 14%. One secondary graft failure was observed. A prophylactic donor lymphocyte infusion (DLI) (1 x 10(5) CD3(+) T cells per kg) was administered to 54% of the subjects, resulting in a CI of aGVHD grades 2-4 and 3-4 to 37% and 17% at 2 years. Immune monitoring revealed an early reconstitution of natural killer (NK) and gamma delta T cells. Cytomegalovirus reactivation associated with expansion of memory-like NK cells. The CI of relapse was 29%, and the nonrelapse mortality 32% at 2 years. The 2-year CI of chronic GVHD (cGVHD) was 23%, of which 17% was moderate. We conclude that only 26% of patients developed aGVHD 2-4 after alpha beta T-cell-depleted allo-HSCT within 100 days and was associated with a low incidence of cGVHD after 2 years. This trial was registered at www.trialregister.nl as #NL4767.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease

    Global Diversity of Sponges (Porifera)

    Get PDF
    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future

    Molecular and biochemical characterization of rat epsilon-N-Trimethyllysine hydroxylase, the first enzyme of carnitine

    No full text
    epsilon-N-Trimethyllysine hydroxylase (EC ) is the first enzyme in the biosynthetic pathway of l-carnitine and catalyzes the formation of beta-hydroxy-N-epsilon-trimethyllysine from epsilon-N-trimethyllysine, a reaction dependent on alpha-ketoglutarate, Fe(2+), and oxygen. We purified the enzyme from rat kidney and sequenced two internal peptides by quadrupole-time-of-flight mass spectroscopy. The peptide sequences were used to search the Expressed Sequence Tag data base, which led to the identification of a rat cDNA of 1218 base pairs encoding a polypeptide of 405 amino acids with a calculated molecular mass of 47.5 kDa. Using the rat sequence we also identified the homologous cDNAs from human and mouse. Heterologous expression of both the rat and human cDNAs in COS cells confirmed that they encode epsilon-N-trimethyllysine hydroxylase. Subcellular fractionation studies revealed that the rat enzyme is localized exclusively in mitochondria. Expression studies in yeast indicated that the rat enzyme is synthesized as a 47.5-kDa precursor and subsequently processed to a mature protein of 43 kDa, presumably upon import in mitochondria. The Michaelis-Menten constants of the purified rat enzyme for trimethyllysine, alpha-ketoglutarate, and Fe(2+) were 1.1 mm, 109 microm, and 54 microm, respectively. Both gel filtration and blue native polyacrylamide gel electrophoresis analysis showed that the native enzyme has a mass of approximately 87 kDa, indicating that in rat epsilon-N-trimethyllysine hydroxylase is a homodime

    Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients

    No full text
    Donor lymphocyte infusions (DLI) can induce durable remissions in multiple myeloma (MM) patients, but this occurs rather infrequently. As the graft-versus-tumor (GvT) effect of DLI depends on the presence of host-dendritic cells (DCs), we tested in a phase I/II trial whether the efficacy of DLI could be improved by simultaneous vaccination with host-DCs. We also analyzed the possibility of further improving the GvT effect by loading the DCs with peptides of mismatched hematopoietic cell-specific minor histocompatibility antigens (mHags). Fifteen MM patients not responding to a first DLI were included. Eleven patients could be treated with a second equivalent dose DLI combined with DC vaccinations, generated from host monocytes (moDC). For four patients, the DC products did not meet the quality criteria. In four of the treated patients the DCs were loaded with host mHag peptides. Toxicity was limited and no acute GvHD occurred. Most patients developed objective anti-host T-cell responses and in one patient a distinct mHag-specific T-cell response accompanied a temporary clinical response. These findings confirm that DLI combined with host-DC vaccination, either unloaded or loaded with mHag peptides, is feasible, safe and capable of inducing host-specific T-cell responses. The limited clinical effects may be improved by developing more immunogenic DC products or by combining this therapy with immune potentiating modalities like checkpoint inhibitors.Bone Marrow Transplantation advance online publication, 14 November 2016; doi:10.1038/bmt.2016.250

    A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma

    No full text
    Item does not contain fulltextAllogeneic stem cell transplantation (allo-SCT) with or without donor lymphocyte infusions (DLI) is the only curative option for several hematological malignancies. Unfortunately, allo-SCT is often associated with GvHD, and patients often relapse. We therefore aim to improve the graft-versus-tumor effect, without increasing the risk of GvHD, by targeting hematopoietic lineage-restricted and tumor-associated minor histocompatibility antigens using peptide-loaded dendritic cell (DC) vaccinations. In the present multicenter study, we report the feasibility, safety and efficacy of this concept. We treated nine multiple myeloma patients with persistent or relapsed disease after allo-SCT and a previous DLI, with donor monocyte-derived mHag-peptide-loaded DC vaccinations combined with a second DLI. Vaccinations were well tolerated and no occurrence of GvHD was observed. In five out of nine patients, we were able to show the induction of mHag-specific CD8+ T cells in peripheral blood. Five out of nine patients, of which four developed mHag-specific T cells, showed stable disease (SD) for 3.5-10 months. This study shows that mHag-based donor monocyte-derived DC vaccination combined with DLI is safe, feasible and capable of inducing objective mHag-specific T-cell responses. Future research should focus on further improvement of the vaccination strategy, toward translating the observed T-cell responses into robust clinical responses
    corecore