184 research outputs found
Patterns of relapse following hippocampal avoidance prophylactic cranial irradiation for small cell lung carcinoma
Background: Hippocampal avoidance techniques are an evolving standard of care for patients undergoing cranial irradiation. Our aim was to assess the oncological outcomes and patterns of failure following hippocampal avoidance prophylactic cranial irradiation (HA-PCI) as a standard of care in unselected patients with both limited and extensive stage small cell lung carcinoma.
Materials and methods: Consecutive patients with small cell lung carcinoma with a complete (limited stage) or good partial (extensive stage) response following chemotherapy were eligible to receive HA-PCI, with a total dose of 25 Gray in 10 fractions. All patients had a negative baseline MRI brain scan with gadolinium prior to HA-PCI. Patients had baseline and follow up Common Toxicity Criteria Adverse Event assessments. Following completion of HA-PCI, all patients had three-monthly MRI brain scans with gadolinium until confirmation of intracranial relapse, as well as three-monthly CT of the chest, abdomen and pelvis. Overall and progression-free survival were calculated using the Kaplan-Meier method.
Results: A total of 17 consecutive patients, 9 men and 8 women, with a mean age of 70 years received HA-PCI between May 2016 and June 2020 after completion of their initial chemotherapy. There were no Grade 4 or greater adverse events. No patient had an isolated hippocampal avoidance zone relapse alone; three of 17 patients had multifocal relapses that included the hippocampal avoidance zone.
Conclusion: In our series, there were no hippocampal only relapses and we conclude that HA-PCI is a safe alternative to standard PCI in the setting of small cell lung cancer
Impact of Individual Acute Phase Serum Amyloid A Isoforms on HDL Metabolism in Mice
The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.1, the two major SAA isoforms, are unclear. Mice deficient in either isoform were used to investigate plasma isoform effects on HDL structure, composition, and apolipoprotein catabolism. Lack of either isoform did not affect the size of HDL, normally enlarged in the AP, and did not significantly change HDL composition. Plasma clearance rates of HDL apolipoproteins were determined using native HDL particles. The fractional clearance rates (FCRs) of apoA-I, apoA-II, and SAA were distinct, indicating that HDL is not cleared as intact particles. The FCRs of SAA1.1 and SAA2.1 in AP mice were similar, suggesting that the selective deposition of SAA1.1 in amyloid plaques is not associated with a difference in the rates of plasma clearance of the isoforms. Although the clearance rate of SAA was reduced in the absence of the HDL receptor, scavenger receptor class B type I (SR-BI), it remained significantly faster compared with that of apoA-I and apoA-II, indicating a relatively minor role of SR-BI in SAA’s rapid clearance. These studies enhance our understanding of SAA metabolism and SAA’s effects on AP-HDL composition and catabolism
Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)
PMCID: PMC3631194This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Adiponectin Reduces Plasma Triglyceride by Increasing VLDL Triglyceride Catabolism
OBJECTIVE—Adiponectin is an adipocyte-derived hormone that plays an important role in glucose and lipid metabolism. The main aims of this study are to investigate the effects of adiponectin on VLDL triglyceride (VLDL-TG) metabolism and the underlying mechanism
Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer
<p>Abstract</p> <p>Background</p> <p>The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes.</p> <p>Results</p> <p>A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the γ-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH<sub>2 </sub>of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the γ-phosphate of the ATP and the substrate nucleophile.</p> <p>Conclusions</p> <p>The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety of ATP and the C8-H of the adenyl moiety.</p
Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis
<p>Abstract</p> <p>Background</p> <p>Serum Amyloid A (SAA) is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD) result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis.</p> <p>Methods</p> <p>Intestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS) colitis was induced in SAA 1/2 double knockout (DKO) mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live <it>Escherichia coli</it>.</p> <p>Results</p> <p>Significant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured <it>E. coli</it>. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohn's Disease patients compared to controls.</p> <p>Conclusions</p> <p>Intestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohn's Disease patients suggests that SAA is involved in the disease process..</p
Trapping of Intermediates with Substrate Analog HBOCaA in the Polymerizations Catalyzer by Class III Polyhydroxybutyrate (PHB) Synthase from Allochromatium Vinosum
Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2–6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 hr−1. This extremely slow rate is due to thermodynamically unfavorable steps that involve formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2–3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [3H]-sT-PhaECAv and HBOCoA yielded [3H]-sTet-O-CoA at a rate constant faster than 17.4 s−1, which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s−1). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model
- …