3 research outputs found

    A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics

    Get PDF
    Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology, characterized by elevated intracranial pressure frequently manifesting with chronic headaches and visual loss. Similar to polycystic ovary syndrome (PCOS), IIH predominantly affects obese women of reproductive age. In this study, we comprehensively examined the systemic and cerebrospinal fluid (CSF) androgen metabolome in women with IIH in comparison with sex-, BMI-, and age-matched control groups with either simple obesity or PCOS (i.e., obesity and androgen excess). Women with IIH showed a pattern of androgen excess distinct to that observed in PCOS and simple obesity, with increased serum testosterone and increased CSF testosterone and androstenedione. Human choroid plexus expressed the androgen receptor, alongside the androgen-activating enzyme aldoketoreductase type 1C3. We show that in a rat choroid plexus cell line, testosterone significantly enhanced the activity of Na+/K+-ATPase, a surrogate of CSF secretion. We demonstrate that IIH patients have a unique signature of androgen excess and provide evidence that androgens can modulate CSF secretion via the choroid plexus. These findings implicate androgen excess as a potential causal driver and therapeutic target in IIH

    Systemic and adipocyte transcriptional and metabolic dysregulation in idiopathic intracranial hypertension

    Get PDF
    BACKGROUND. Idiopathic intracranial hypertension (IIH) is a condition predominantly affecting obese women of reproductive age. Recent evidence suggests that IIH is a disease of metabolic dysregulation, androgen excess and an increased risk of cardiovascular morbidity. Here we evaluate systemic and adipose specific metabolic determinants of the IIH phenotype. METHODS. In fasted, matched IIH (N=97) and control (N=43) patients, we assessed: glucose and insulin homeostasis and leptin levels. Body composition was assessed along with an interrogation of adipose tissue function via nuclear magnetic resonance metabolomics and RNA sequencing in paired omental and subcutaneous biopsies in a case control study. RESULTS. We demonstrate an insulin and leptin resistant phenotype in IIH in excess to that driven by obesity. Adiposity in IIH is preferentially centripetal and is associated with increased disease activity and insulin resistance. IIH adipocytes appear transcriptionally and metabolically primed towards depot-specific lipogenesis. CONCLUSIONS. These data show that IIH is a metabolic disorder in which adipose tissue dysfunction is a feature of the disease. Managing IIH as a metabolic disease could reduce disease morbidity and improving cardiovascular outcomes. FUNDING. This study was supported by the National Institute of Health Research UK (NIHR-CS-011-028), the Medical Research Council UK (MR/K015184/1) and the Midlands Neuroscience Teaching and Research Fund

    11βHSD1 inhibition with AZD4017 improves lipid profiles and lean muscle mass in idiopathic intracranial hypertension

    Get PDF
    BACKGROUND The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) determines pre-receptor metabolism and activation of glucocorticoids within peripheral tissues. Its dysregulation has been implicated in a wide array of metabolic diseases, leading to the development of selective 11β-HSD1 inhibitors. We examined the impact of the reversible competitive 11β-HSD1 inhibitor, AZD4017, on the metabolic profile in an overweight female cohort with idiopathic intracranial hypertension. METHODS We conducted a UK multicenter phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with AZD4017. Serum markers of glucose homeostasis, lipid metabolism, renal and hepatic function, inflammation and androgen profiles were determined and examined in relation to changes in fat and lean mass by dual-energy X-ray absorptiometry (DXA). RESULTS Patients receiving AZD4017 showed significant improvements in lipid profiles (decreased cholesterol, increased HDL and cholesterol/HDL ratio), markers of hepatic function (decreased ALP and GGT) and increased lean muscle mass (1.8%, p<0.001). No changes in BMI, fat mass and markers of glucose metabolism or inflammation were observed. Patients receiving AZD4017 demonstrated increased levels of circulating androgens, positively correlated with changes in total lean muscle mass. CONCLUSIONS These beneficial metabolic changes, represent a reduction in risk factors associated with raised intra-cranial pressure and represent further beneficial therapeutic outcomes of 11β-HSD1 inhibition by AZD4017 in this overweight IIH cohort. In particular, beneficial changes in lean muscle mass associated with AZD4017 may reflect new applications for this nature of inhibitor in the management of conditions such as sarcopenia
    corecore