371 research outputs found

    MYC is not detected in highly proliferating normal spermatogonia but is coupled with CIP2A in testicular cancers

    Get PDF
    High MYC expression is linked to proliferative activity in most normal tissues and in cancer. MYC also supports self-renewal and proliferation of many types of tissue progenitor cells. Cancerous inhibitor of PP2A (CIP2A) promotes MYC phosphorylation and activity during intestinal crypt regeneration in vivo and in various cancers. CIP2A also supports male germ cell proliferation in vivo. However, the role of MYC in normal germ cell proliferation and spermatogonial progenitor self-renewal is currently unclear.  Here, we demonstrate that male germ cells are CIP2A-positive but lack detectable levels of MYC protein; whereas MYC is highly expressed in Leydig cells and peritubular myoid cells contributing thereby to the testicular stem cell niche. On the other hand,  MYC was co-expressed with CIP2A in testicular cancers. These results demonstrate that CIP2A and MYC are spatially uncoupled in the regulation of spermatogenesis, but functional relationship between these two human oncoproteins is established during testicular cancer transformation. We propose that further analysis of mechanisms of MYC silencing in spermatogonial progenitors may reveal novel fundamental information relevant to understanding of MYC expression in cancer. </p

    Demography and disorders of German Shepherd Dogs under primary veterinarycare in the UK

    Get PDF
    The German Shepherd Dog (GSD) has been widely used for a variety of working roles. However, concerns for the health and welfare of the GSD have been widely aired and there is evidence that breed numbers are now in decline in the UK. Accurate demographic and disorder data could assist with breeding and clinical prioritisation. The VetCompassTM Programme collects clinical data on dogs under primary veterinary care in the UK. This study included all VetCompassTM dogs under veterinary care during 2013. Demographic, mortality and clinical diagnosis data on GSDs were extracted and reported

    The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice

    Get PDF
    Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitro and in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA- MB- 231 cells in correlation with reduced activation of the survival pathway NF kappa B, as a consequence of diminished I kappa B and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NF kappa B activity and transcriptional downregulation of AP-1. NF kappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NF kappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NF kappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible. Copyright (c) 2007 S. Karger AG, Basel

    The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing

    Get PDF
    BACKGROUND: Recent studies have shown that the fecal microbiota is generally resilient to short-term antibiotic administration, but some bacterial taxa may remain depressed for several months. Limited information is available about the effect of antimicrobials on small intestinal microbiota, an important contributor to gastrointestinal health. The antibiotic tylosin is often successfully used for the treatment of chronic diarrhea in dogs, but its exact mode of action and its effect on the intestinal microbiota remain unknown. The aim of this study was to evaluate the effect of tylosin on canine jejunal microbiota. Tylosin was administered at 20 to 22 mg/kg q 24 hr for 14 days to five healthy dogs, each with a pre-existing jejunal fistula. Jejunal brush samples were collected through the fistula on days 0, 14, and 28 (14 days after withdrawal of tylosin). Bacterial diversity was characterized using massive parallel 16S rRNA gene pyrosequencing. RESULTS: Pyrosequencing revealed a previously unrecognized species richness in the canine small intestine. Ten bacterial phyla were identified. Microbial populations were phylogenetically more similar during tylosin treatment. However, a remarkable inter-individual response was observed for specific taxa. Fusobacteria, Bacteroidales, and Moraxella tended to decrease. The proportions of Enterococcus-like organisms, Pasteurella spp., and Dietzia spp. increased significantly during tylosin administration (p < 0.05). The proportion of Escherichia coli-like organisms increased by day 28 (p = 0.04). These changes were not accompanied by any obvious clinical effects. On day 28, the phylogenetic composition of the microbiota was similar to day 0 in only 2 of 5 dogs. Bacterial diversity resembled the pre-treatment state in 3 of 5 dogs. Several bacterial taxa such as Spirochaetes, Streptomycetaceae, and Prevotellaceae failed to recover at day 28 (p < 0.05). Several bacterial groups considered to be sensitive to tylosin increased in their proportions. CONCLUSION: Tylosin may lead to prolonged effects on the composition and diversity of jejunal microbiota. However, these changes were not associated with any short-term clinical signs of gastrointestinal disease in healthy dogs. Our results illustrate the complexity of the intestinal microbiota and the challenges associated with evaluating the effect of antibiotic administration on the various bacterial groups and their potential interactions

    PP2A inhibitor PME-1 drives kinase inhibitor resistance in glioma cells

    Get PDF
    Glioblastoma multiforme (GBM) lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in GBM, glioma cells exhibit intrinsic resistance towards many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the co-expression of pro-apoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in GBM

    Debateable Marriages: Marriage and child marriage in Saudi Arabia

    Get PDF
    This article examines marriage and the constitution of familial relationships in Saudi Arabia, with a specific focus on one form of marriage that has recently become an issue of public, political, and religious discussion, that of “child marriage.” The situation within Saudi Arabia is compared with gendered relationships in other countries, most notably those in Western Europe, with specific attention given to the United Kingdom. It is argued that policy developments in Saudi Arabia need to be seen in the context of wider Saudi culture, Sharia law, and religious interpretations of the Koran

    ETS1 Mediates MEK1/2-Dependent Overexpression of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) in Human Cancer Cells

    Get PDF
    EGFR-MEK-ERK signaling pathway has an established role in promoting malignant growth and disease progression in human cancers. Therefore identification of transcriptional targets mediating the oncogenic effects of the EGFR-MEK-ERK pathway would be highly relevant. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently characterized human oncoprotein. CIP2A promotes malignant cell growth and is over expressed at high frequency (40–80%) in most of the human cancer types. However, the mechanisms inducing its expression in cancer still remain largely unexplored. Here we present systematic analysis of contribution of potential gene regulatory mechanisms for high CIP2A expression in cancer. Our data shows that evolutionary conserved CpG islands at the proximal CIP2A promoter are not methylated both in normal and cancer cells. Furthermore, sequencing of the active CIP2A promoter region from altogether seven normal and malignant cell types did not reveal any sequence alterations that would increase CIP2A expression specifically in cancer cells. However, treatment of cancer cells with various signaling pathway inhibitors revealed that CIP2A mRNA expression was sensitive to inhibition of EGFR activity as well as inhibition or activation of MEK-ERK pathway. Moreover, MEK1/2-specific siRNAs decreased CIP2A protein expression. Series of CIP2A promoter-luciferase constructs were created to identify proximal −27 to −107 promoter region responsible for MEK-dependent stimulation of CIP2A expression. Additional mutagenesis and chromatin immunoprecipitation experiments revealed ETS1 as the transcription factor mediating stimulation of CIP2A expression through EGFR-MEK pathway. Thus, ETS1 is probably mediating high CIP2A expression in human cancers with increased EGFR-MEK1/2-ERK pathway activity. These results also suggest that in addition to its established role in invasion and angiogenesis, ETS1 may support malignant cellular growth via regulation of CIP2A expression and protein phosphatase 2A inhibition
    corecore