116 research outputs found

    A Novel Intravital Method to Evaluate Cerebral Vasospasm in Rat Models of Subarachnoid Hemorrhage: A Study with Synchrotron Radiation Angiography

    Get PDF
    Precise in vivo evaluation of cerebral vasospasm caused by subarachnoid hemorrhage has remained a critical but unsolved issue in experimental small animal models. In this study, we used synchrotron radiation angiography to study the vasospasm of anterior circulation arteries in two subarachnoid hemorrhage models in rats. Synchrotron radiation angiography, laser Doppler flowmetry-cerebral blood flow measurement, [125I]N-isopropyl-p-iodoamphetamine cerebral blood flow measurement and terminal examinations were applied to evaluate the changes of anterior circulation arteries in two subarachnoid hemorrhage models made by blood injection into cisterna magna and prechiasmatic cistern. Using synchrotron radiation angiography technique, we detected cerebral vasospasm in subarachnoid hemorrhage rats compared to the controls (p<0.05). We also identified two interesting findings: 1) both middle cerebral artery and anterior cerebral artery shrunk the most at day 3 after subarachnoid hemorrhage; 2) the diameter of anterior cerebral artery in the prechiasmatic cistern injection group was smaller than that in the cisterna magna injection group (p<0.05), but not for middle cerebral artery. We concluded that synchrotron radiation angiography provided a novel technique, which could directly evaluate cerebral vasospasm in small animal experimental subarachnoid hemorrhage models. The courses of vasospasm in these two injection models are similar; however, the model produced by prechiasmatic cistern injection is more suitable for study of anterior circulation vasospasm

    Hypersensitivity to Thromboxane Receptor Mediated Cerebral Vasomotion and CBF Oscillations during Acute NO-Deficiency in Rats

    Get PDF
    ), NO-deficiency is often associated with activation of thromboxane receptors (TP). In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. synthesis by ozagrel (10 mg/kg iv.) attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632.These results suggest that hypersensitivity of the TP-receptor – Rho-kinase signaling pathway contributes to the development of low frequency cerebral vasomotion which may propagate to vasospasm in pathophysiological states associated with NO-deficiency

    Perfusions-CT im Management von SAB-Patienten

    No full text
    corecore