10 research outputs found

    Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation

    No full text
    Bacterial adherence to mucosal cells is a key virulence trait of pathogenic bacteria. The type 1 fimbriae and the P-fimbriae of Escherichia coli have both been described to be important for the establishment of urinary tract infections. While P-fimbriae recognize kidney glycosphingolipids carrying the Galalpha4Gal determinant, type 1 fimbriae bind to the urothelial mannosylated glycoproteins uroplakin Ia and Ib. The F1C fimbriae are one additional type of fimbria correlated with uropathogenicity. Although it was identified 20 years ago its receptor has remained unidentified. Here we report that F1C-fimbriated bacteria selectively interact with two minor glycosphingolipids isolated from rat, canine, and human urinary tract. Binding-active compounds were isolated and characterized as galactosylceramide, and globotriaosylceramide, both with phytosphingosine and hydroxy fatty acids. Comparison with reference glycosphingolipids revealed that the receptor specificity is dependent on the ceramide composition. Galactosylceramide was present in the bladder, urethers, and kidney while globotriaosylceramide was present only in the kidney. Using a functional assay, we demonstrate that binding of F1C-fimbriated Escherichia coli to renal cells induces interleukin-8 production, thus suggesting a role for F1C-mediated attachment in mucosal defense against bacterial infections

    Enhanced biofilm formation by Escherichia coli LPS mutants defective in hep biosynthesis

    Get PDF
    Lipopolysaccharide (LPS) is the major component of the surface of Gram-negative bacteria and its polysaccharide portion is situated at the outermost region. We investigated the relationship between the polysaccharide portion of LPS and biofilm formation using a series of Escherichia coli mutants defective in genes earlier shown to affect the LPS sugar compositions. Biofilm formation by a deep rough LPS mutant, the hldE strain, was strongly enhanced in comparison with the parental strain and other LPS mutants. The hldE strain also showed a phenotype of increased auto-aggregation and stronger cell surface hydrophobicity compared to the wild-type. Similar results were obtained with another deep rough LPS mutant, the waaC strain whose LPS showed same molecular mass as that of the hldE strain. Confocal laser scanning microscopy (CLSM) analysis and biofilm formation assay using DNase I revealed that biofilm formation by the hldE strain was dependent on extracellular DNA. Furthermore, a loss of flagella and an increase in amount of outer membrane vesicles in case of the hldE strain were also observed by transmission electron microscopy and atomic force microscopy, respectively. In addition, we demonstrated that a mutation in the hldE locus, which alters the LPS structure, caused changes in both expression and properties of several surface bacterial factors involved in biofilm formation and virulence. We suggest that the implication of these results should be considered in the context of biofilm formation on abiotic surfaces, which is frequently associated with nosocominal infections such as the catheter-associated infections

    Phage Display of Random Peptide Libraries: Applications, Limits, and Potential

    No full text
    corecore