425 research outputs found

    (Im) Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    Get PDF
    Background: Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results: This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions: A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the ‘perfect’ regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering

    Rate limitation within a single enzyme is directly related to enzyme intermediate levels.

    Get PDF
    AbstractThe extents to which different rate constants limit the steady-state rate of an isolated enzyme can be quantified as the control coefficients of those constants and elemental steps. We have found that the sum of the control coefficients of rate constants characterising unidirectional rates depleting a particular enzyme intermediate is equal to the concentration of that enzyme intermediate as a fraction of the total enzyme concentration. Together with simple measurements this powerful relation may be used (i) to estimate certain enzyme intermediate levels, in particular the free enzyme concentration, and (ii) to estimate the control coefficients of rate constants and steps

    Control of spatially heterogeneous and time-varying cellular reaction networks: a new summation law

    Get PDF
    A hallmark of a plethora of intracellular signaling pathways is the spatial separation of activation and deactivation processes that potentially results in precipitous gradients of activated proteins. The classical Metabolic Control Analysis (MCA), which quantifies the influence of an individual process on a system variable as the control coefficient, cannot be applied to spatially separated protein networks. The present paper unravels the principles that govern the control over the fluxes and intermediate concentrations in spatially heterogeneous reaction networks. Our main results are two types of the control summation theorems. The first type is a non-trivial generalization of the classical theorems to systems with spatially and temporally varying concentrations. In this generalization, the process of diffusion, which enters as the result of spatial concentration gradients, plays a role similar to other processes such as chemical reactions and membrane transport. The second summation theorem is completely novel. It states that the control by the membrane transport, the diffusion control coefficient multiplied by two, and a newly introduced control coefficient associated with changes in the spatial size of a system (e.g., cell), all add up to one and zero for the control over flux and concentration. Using a simple example of a kinase/phosphatase system in a spherical cell, we speculate that unless active mechanisms of intracellular transport are involved, the threshold cell size is limited by the diffusion control, when it is beginning to exceed the spatial control coefficient significantly
    • …
    corecore