23,650 research outputs found

    Tracking in a space variant active vision system

    Full text link
    Without the ability to foveate on and maintain foveation, active vision for applications such as surveillance, object recognition and object tracking are difficult to build. Although foveation in cartesian coordinates is being actively pursued by many, multi-resolution high accuracy foveation in log polar space has not been given much attention. This paper addresses the use of foveation to track a single object as well as multiple objects for a simulated space variant active vision system. Complex logarithmic mapping is chosen firstly because it provides high resolution and wide angle viewing. Secondly, the spatially variant structure of log polar space leads to an object increasing in size as it moves towards the fovea. This is important as we know which object is closer to the fovea at any instant in time.<br /

    Generalised Space-time and Gauge Transformations

    Get PDF
    We consider the generalised space-time introduced by the author in 2003 in the context of the non-linear realisation of the semi-direct product of E11 and its first fundamental representation. For all the fields we propose gauge transformations which are compatible with the underlying E11 structure. A crucial role is played by the generalised vielbein that the generalised space-time possess. We work out the explicit form of the gauge transformations, at low levels, in four, five and eleven dimensions.Comment: 33 page

    Duality Symmetries and G^{+++} Theories

    Full text link
    We show that the non-linear realisations of all the very extended algebras G^{+++}, except the B and C series which we do not consider, contain fields corresponding to all possible duality symmetries of the on-shell degrees of freedom of these theories. This result also holds for G_2^{+++} and we argue that the non-linear realisation of this algebra accounts precisely for the form fields present in the corresponding supersymmetric theory. We also find a simple necessary condition for the roots to belong to a G^{+++} algebra.Comment: 35 pages. v2: 2 appendices added, other minor corrections. v3: tables corrected, other minor changes, one appendix added, refs. added. Version published in Class. Quant. Gra

    On the relation between nuclear and nucleon Structure Functions and their moments

    Full text link
    Calculations of nuclear Structure Functions (SF) F_k^A(x,Q^2) routinely exploit a generalized convolution, involving the SF for nucleons F_k^N and the linking SF f^{PN,A} of a fictitious nucleus, composed of point-particles, with the latter usually expressed in terms of hadronic degrees of freedom. For finite Q^2 the approach seemed to be lacking a solid justification and the same is the case for recently proposed, effective nuclear parton distribution functions (pdf), which exactly reproduce the above-mentioned hadronically computed F_k^A. Many years ago Jaffe and West proved the above convolution in the Plane Wave Impulse Approximation (PWIA) for the nuclear components in the convolution. In the present note we extend the above proof to include classes of nuclear Final State Interactions (FSI). One and the same function appears to relate parton distribution functions (pdf) in nuclei and nucleons, and SF for nuclear targets and for nucleons. That relation is the previously conjectured one,with an entirely different interpretation of f^{PN,A}. We conclude with an extensive analysis of moments of nuclear SF based on the generalized convolution. Characteristics of those moments are shown to be quite similar to the same for a nucleon. We conclude that the above evidences asymptotic freedom of a nucleon in a medium and not of a composite nucleus.Comment: 18 pages, 9 figure

    Detection limits for close eclipsing and transiting sub-stellar and planetary companions to white dwarfs in the WASP survey

    Full text link
    We used photometric data from the WASP (Wide-Angle Search for Planets) survey to explore the possibility of detecting eclipses and transit signals of brown dwarfs, gas giants and terrestrial companions in close orbit around white dwarfs. We performed extensive Monte Carlo simulations and we found that for Gaussian random noise WASP is sensitive to companions as small as the Moon orbiting a VV\sim12 white dwarf. For fainter stars WASP is sensitive to increasingly larger bodies. Our sensitivity drops in the presence of co-variant noise structure in the data, nevertheless Earth-size bodies remain readily detectable in relatively low S/N data. We searched for eclipses and transit signals in a sample of 194 white dwarfs in the WASP archive however, no evidence for companions was found. We used our results to place tentative upper limits to the frequency of such systems. While we can only place weak limits on the likely frequency of Earth-sized or smaller companions; brown dwarfs and gas giants (radius\simeq Rjup_{jup}) with periods \leq0.2 days must certainly be rare (<10%<10\%). More stringent constraints requires significantly larger white dwarf samples, higher observing cadence and continuous coverage. The short duration of eclipses and transits of white dwarfs compared to the cadence of WASP observations appears to be one of the main factors limiting the detection rate in a survey optimised for planetary transits of main sequence stars.Comment: 8 pages, 3 figure

    Tortuous ways to the extraction of neutron observables from inclusive lepton scattering

    Full text link
    We analyze new JLAB data for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3x0.950.3\lesssim x\lesssim 0.95 show on a logarithmic scale reasonable agreement for all targets. However, closer inspection of the Quasi-Elastic components bares serious discrepancies. EMC ratios which may contain less systematic errors fare the same. The above observations for the new data do not enable the extraction of the magnetic form factor (FF) GMnG_M^n and the Structure Function (SFs) F2nF_2^n of the neutron, although the application of exactly the same analysis to older data had been successful. We add to the above analysis older CLAS collaboration on F2DF_2^D. Removing some scattered points, it appears possible to obtain the above mentioned neutron information. We compare our results with others from alternative sources. Particular attention is paid to the A=3 iso-doublet. Present data exist only for 3^3He, but the available input and charge symmetry also enable computations for 3^3H. Their average is the computed iso-scalar part and is compared with the empirical modification of 3^3He towards a fictitious A=3 iso-singlet.Comment: 27 pages, 30 figure

    Alignments of the Dominant Galaxies in Poor Clusters

    Get PDF
    We have examined the orientations of brightest cluster galaxies (BCGs) in poor MKW and AWM clusters and find that, like their counterparts in richer Abell clusters, poor cluster BCGs exhibit a strong propensity to be aligned with the principal axes of their host clusters as well as the surrounding distribution of nearby (< 20/h Mpc) Abell clusters. The processes responsible for dominant galaxy alignments are therefore independent of cluster richness. We argue that these alignments most likely arise from anisotropic infall of material into clusters along large-scale filaments.Comment: 8 pages, 5 figure

    E_{11}, ten forms and supergravity

    Full text link
    We extend the previously given non-linear realisation of E_{11} for the decomposition appropriate to IIB supergravity to include the ten forms that were known to be present in the adjoint representation. We find precise agreement with the results on ten forms found by closing the IIB supersymmetry algebra.Comment: 14 page

    On Distribution Functions for Partons in Nuclei

    Full text link
    We suggest that a previously conjectured relation between Structure Functions (SF) for nuclei and nucleons also links distribution functions (df) for partons in a nucleus and in nucleons. The above suggestion ensures in principle identical results for SF F2AF_2^A, whether computed with hadronic or partonic degrees of freedom. In practice there are differences, due to different F2nF_2^n input. We show that the thus defined nuclear parton distribution functions (pdf) respect standard sumrules. In addition we numerically compare some moments of nuclear SF, and find agreement between results, using hadronic and partonic descriptions. We present computations of EMC ratios for both, and compare those with hadronic predictions and data. In spite of substantial differences in the participating SF, the two representations produce approximately the same EMC ratios. The apparent correlation between the above deviations is ascribed to a sumrule for F2AF_2^A. We conclude with a discussion of alternative approaches to nuclear pdf.Comment: 14 pages, 4 figure
    corecore