5,122 research outputs found

    Preimplantation chromosomal mosaics, chimaeras and confined placental mosaicism

    Get PDF
    Some human preimplantation embryos are chromosomally mosaic. For technical reasons, estimates of the overall frequency vary widely from 90% and the true frequency remains unknown. Aneuploid/diploid and aneuploid/aneuploid mosaics typically arise during early cleavage stages before the embryonic genome is fully activated and when cell cycle checkpoints are not operating normally. Other mosaics include chaotic aneuploid mosaics and mixoploids, some of which arise by abnormal chromosome segregation at the first cleavage division. Chimaeras are similar to mosaics, in having two genetically distinct cell populations, but they arise from more than one zygote and occur less often. After implantation, the frequency of mosaic embryos declines to about 2% and most are trisomic/diploid mosaics, with trisomic cells confined to the placenta. Thus, few babies are born with chromosomal mosaicism. This review discusses the origin of different types of chromosomal mosaics and chimaeras; their fate and the relationship between preimplantation chromosomal mosaicism and confined placental mosaicism in human conceptuses and animal models. Abnormal cells in mosaic embryos may be depleted by cell death, other types of cell selection or cell correction but the most severely affected mosaic embryos probably die. Trisomic cells could become restricted to placental lineages if cell selection or correction is less effective in placental lineages and/or they are preferentially allocated to a placental lineage. However, the relationship between preimplantation mosaicism and confined placental mosaicism may be complex because the specific chromosome(s) involved will influence whether chromosomally abnormal cells survive predominately in the placental trophoblast and/or placental mesenchyme. LAY SUMMARY: Human cells normally have 23 pairs of chromosomes, which carry the genes. During the first few days of development, some human embryos are chromosomal mosaics. These mosaic embryos have both normal cells and cells with an abnormal number of chromosomes, which arise from the same fertilised egg. (More rarely, the different cell populations arise from more than one fertilised egg and these embryos are called chimaeras.) If chromosomally abnormal cells survive to term, they could cause birth defects. However, few abnormal cells survive and those that do are usually confined to the placenta, where they are less likely to cause harm. It is not yet understood how this restriction occurs but the type of chromosomal abnormality influences which placental tissues are affected. This review discusses the origin of different types of chromosomally abnormal cells, their fate and how they might become confined to the placenta in humans and animal models

    Northern Bobwhite Survival, Nest Success, and Habitat Use in Kentucky During the Breeding Season

    Get PDF
    Northern bobwhite (Colinus virginianus) populations have experienced protracted declines over much of their range. There has been an annual decrease of 2.61% since the 1960s in Kentucky, an area representative of the Mid-South where there is a lack of data on basic population parameters. Much of the decline is attributed to prevailing land-use practices and associated habitat loss. We monitored northern bobwhite on a 515-ha farm in Oldham County, Kentucky to assess survival rates, nest success rates, and habitat use in the Mid- South. The farm consisted of row crops, cool-season pastures and hay (primarily tall fescue), fallow native warm-season grass fields, and woods. We captured birds using baited funnel traps and fitted them with harness radio transmitters and monitored them daily during April–August, 2009 and 2010. We radiomarked 88 birds (40 females, 48 males) and monitored 24 nests, 9 (37.5%) of which were successful, over the 2 years. Survival rates were 25.3 and 27.9% for 2009 and 2010, respectively, based on estimates from Program MARK. Home range size (54.0, range 1⁄4 38.0–55.9 ha) did not differ by sex, age, or year (P .0.05). Quail favored food plots in both years and avoided developed areas

    Descriptions and phylogeny of four limnephiloid caddisflies (Trichoptera) based on first instars

    Get PDF
    First instars from a representative species of each of the limnephiloid families Goeridae, Brachycentridae, Lepdostomatidae, and Uenoidae and the sericostomatoid family Sericostomatidae were reared, described, and illustrated

    Defect tolerance in as-deposited selenium-alloyed cadmium telluride solar cells

    Get PDF
    The efficiency of cadmium telluride (CdTe) solar cells is limited primarily by voltage, which is known to depend on the carrier concentration and carrier lifetimes within the absorber layer of the cell. Here, cathodoluminescence measurements are made on an as-deposited CdSeTe/CdTe solar cell that show that selenium alloyed CdTe material luminesces much more strongly than non-alloyed CdTe. This reduction in non-radiative recombination in the CdSeTe suggests that the selenium gives it a certain defect tolerance. This has implications for carrier lifetimes and voltages in cadmium telluride solar cells

    Metallurgical risk factors in grade 91 steel

    Get PDF

    Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mouse corneal epithelium is a continuously renewing 5–6 cell thick protective layer covering the corneal surface, which regenerates rapidly when injured. It is maintained by peripherally located limbal stem cells (LSCs) that produce transient amplifying cells (TACs) which proliferate, migrate centripetally, differentiate and are eventually shed from the epithelial surface. LSC activity is required both for normal tissue maintenance and wound healing. Mosaic analysis can provide insights into LSC function, cell movement and cell mixing during tissue maintenance and repair. The present study investigates cell streaming during corneal maintenance and repair and changes in LSC function with age.</p> <p>Results</p> <p>The initial pattern of corneal epithelial patches in <it>XLacZ</it><sup>+/- </sup>X-inactivation mosaics was replaced after birth by radial stripes, indicating activation of LSCs. Stripe patterns (clockwise, anticlockwise or midline) were independent between paired eyes. Wound healing in organ culture was analysed by mosaic analysis of <it>XLacZ</it><sup>+/- </sup>eyes or time-lapse imaging of GFP mosaics. Both central and peripheral wounds healed clonally, with cells moving in from all around the wound circumference without significant cell mixing, to reconstitute striping patterns. Mosaic analysis revealed that wounds can heal asymmetrically. Healing of peripheral wounds produced stripe patterns that mimicked some aberrant striping patterns observed in unwounded corneas. Quantitative analysis provided no evidence for an uneven distribution of LSC clones but showed that corrected corneal epithelial stripe numbers declined with age (implying declining LSC function) but stabilised after 39 weeks.</p> <p>Conclusion</p> <p>Striping patterns, produced by centripetal movement, are defined independently and stochastically in individual eyes. Little cell mixing occurs during the initial phase of wound healing and the direction of cell movement is determined by the position of the wound and not by population pressure from the limbus. LSC function declines with age and this may reflect reduced LSCs numbers, more quiescent LSCs or a reduced ability of older stem cells to maintain tissue homeostasis. The later plateau of LSC function might indicate the minimum LSC function that is sufficient for corneal epithelial maintenance. Quantitative and temporal mosaic analyses provide new possibilities for studying stem cell function, tissue maintenance and repair.</p

    Computer simulation of neutral drift among limbal epithelial stem cells of mosaic mice

    Get PDF
    Acknowledgements We thank Graham West for writing the software that made this study possible and Ronnie Grant for help with some of the figures. Disclosure of potential conflicts of interest The authors indicate no potential conflicts of interest. Funding information This work was supported by the UK Biotechnology and Biological Sciences Research Council (grants BB/J015172/1 and BB/J015237/1).Peer reviewedPublisher PD

    The Origin of the Brightest Cluster Galaxies

    Get PDF
    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centres which far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive, central galaxy with surface brightness and velocity dispersion profiles similar to observed BCG's. To enhance the resolution of the simulation, 100 dark halos at z=2z=2 are replaced with self-consistent disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000 particles for the 20 largest galaxies and 10000 particles for the remaining ones. This technique allows us to analyze the stellar and dark matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution agreeing with observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version available at http://www.cita.utoronto.ca/~dubinski/bcg
    • 

    corecore